
CadQuery Documentation
Release 2.4.0

David Cowden

Feb 16, 2024

CONTENTS

1 See CadQuery in Action 3

2 Quick Links 5

3 Table Of Contents 7
3.1 Introduction . 7
3.2 Installing CadQuery . 9
3.3 QuickStart . 13
3.4 Design Principles . 20
3.5 Concepts . 21
3.6 Sketch . 40
3.7 Assemblies . 44
3.8 CadQuery Scripts and Object Output . 60
3.9 Examples . 61
3.10 API Reference . 90
3.11 Selectors Reference . 98
3.12 CadQuery Class Summary . 101
3.13 Importing and Exporting Files . 221
3.14 The CadQuery Gateway Interface . 231
3.15 Extending CadQuery . 237
3.16 RoadMap: Planned Features . 240

4 Indices and tables 243

Python Module Index 245

Index 247

i

ii

CadQuery Documentation, Release 2.4.0

CadQuery is an intuitive, easy-to-use Python library for building parametric 3D CAD models. It has several goals:

• Build models with scripts that are as close as possible to how you’d describe the object to a human, using a
standard, already established programming language

• Create parametric models that can be very easily customized by end users

• Output high quality CAD formats like STEP, AMF and 3MF in addition to traditional STL

• Provide a non-proprietary, plain text model format that can be edited and executed with only a web browser

CONTENTS 1

CadQuery Documentation, Release 2.4.0

2 CONTENTS

CHAPTER

ONE

SEE CADQUERY IN ACTION

This Getting Started Video will show you what CadQuery can do. Please note that the video has not been updated for
CadQuery 2 and still shows CadQuery use within FreeCAD.

3

https://youtu.be/lxhBNOE7GVs

CadQuery Documentation, Release 2.4.0

4 Chapter 1. See CadQuery in Action

CHAPTER

TWO

QUICK LINKS

• QuickStart

• CadQuery CheatSheet

• API Reference

5

_static/cadquery_cheatsheet.html

CadQuery Documentation, Release 2.4.0

6 Chapter 2. Quick Links

CHAPTER

THREE

TABLE OF CONTENTS

3.1 Introduction

3.1.1 What is CadQuery

CadQuery is an intuitive, easy-to-use Python library for building parametric 3D CAD models. It has several goals:

• Build models with scripts that are as close as possible to how you’d describe the object to a human, using a
standard, already established programming language

• Create parametric models that can be very easily customized by end users

• Output high quality CAD formats like STEP, AMF and 3MF in addition to traditional STL

• Provide a non-proprietary, plain text model format that can be edited and executed with only a web browser

CadQuery 2 is based on OCP, which is a set of Python bindings for the open-source OpenCascade modelling kernel.

Using CadQuery, you can build fully parametric models with a very small amount of code. For example, this simple
script produces a flat plate with a hole in the middle:

thickness = 0.5
width = 2.0
result = Workplane("front").box(width, width, thickness).faces(">Z").hole(thickness)

That’s a bit of a dixie-cup example. But it is pretty similar to a more useful part: a parametric pillow block for a
standard 608-size ball bearing:

7

https://github.com/CadQuery/OCP
http://www.opencascade.com/

CadQuery Documentation, Release 2.4.0

(length, height, diam, thickness, padding) = (30.0, 40.0, 22.0, 10.0, 8.0)

result = (
Workplane("XY")
.box(length, height, thickness)
.faces(">Z")
.workplane()
.hole(diam)
.faces(">Z")
.workplane()
.rect(length - padding, height - padding, forConstruction=True)
.vertices()
.cboreHole(2.4, 4.4, 2.1)

)

Lots more examples are available in the Examples

3.1.2 CadQuery is a library, GUIs are separate

CadQuery is a library, that’s intentionally designed to be usable as a GUI-less library. This enables its use in a variety
of engineering and scientific applications that create 3D models programmatically.

If you’d like a GUI, you have a couple of options:

• The Qt-based GUI CQ-editor

• As a Jupyter extension jupyter-cadquery

3.1.3 Why CadQuery instead of OpenSCAD?

Like OpenSCAD, CadQuery is an open-source, script based, parametric model generator. But CadQuery has several
key advantages:

1. The scripts use a standard programming language, Python, and thus can benefit from the associated infras-
tructure. This includes many standard libraries and IDEs

2. More powerful CAD kernel OpenCascade is much more powerful than CGAL. Features supported natively by
OCC include NURBS, splines, surface sewing, STL repair, STEP import/export, and other complex operations,
in addition to the standard CSG operations supported by CGAL

8 Chapter 3. Table Of Contents

https://github.com/CadQuery/CQ-editor
https://github.com/bernhard-42/jupyter-cadquery

CadQuery Documentation, Release 2.4.0

3. Ability to import/export STEP and DXF We think the ability to begin with a STEP model, created in a CAD
package, and then add parametric features is key. This is possible in OpenSCAD using STL, but STL is a lossy
format

4. Less Code and easier scripting CadQuery scripts require less code to create most objects, because it is possible
to locate features based on the position of other features, workplanes, vertices, etc.

5. Better Performance CadQuery scripts can build STL, STEP, AMF and 3MF faster than OpenSCAD.

3.1.4 Where does the name CadQuery come from?

CadQuery is inspired by jQuery, a popular framework that revolutionized web development involving JavaScript.

CadQuery is for 3D CAD what jQuery is for JavaScript. If you are familiar with how jQuery works, you will probably
recognize several jQuery features that CadQuery uses:

• A fluent API to create clean, easy to read code

• Ability to use the library along side other Python libraries

• Clear and complete documentation, with plenty of samples.

3.2 Installing CadQuery

To install both Cadquery and CQ-Editor together with a single installer see the instructions below Adding a Nicer GUI
via CQ-editor.

CadQuery may be installed with either conda or pip. The conda installation method is the better tested and more mature
option.

3.2.1 Install via conda

Begin by installing the conda package manager. If conda is already installed skip to conda.

Install the Conda Package Manager

In principle, any Conda distribution will work, but it is probably best to install Mambaforge to a local directory and
to avoid running conda init. After performing a local directory installation, Mambaforge can be activated via the
[scripts,bin]/activate scripts. This will help avoid polluting and breaking the local Python installation.

Mambaforge is a minimal installer that sets conda-forge as the default channel for package installation and provides
mamba. You can swap almost all commands between conda & mamba.

In Linux/MacOS, the local directory installation method looks something like this:

Install to ~/mambaforge
curl -L -o mambaforge.sh "https://github.com/conda-forge/miniforge/releases/latest/
→˓download/Mambaforge-$(uname)-$(uname -m).sh"
bash mambaforge.sh -b -p $HOME/mambaforge

Activate
source $HOME/mambaforge/bin/activate

On Windows, download the installer and double click it on the file browser or install non-interactively as follows:

3.2. Installing CadQuery 9

http://www.jquery.com
https://github.com/conda-forge/miniforge#mambaforge
https://mamba.readthedocs.io/en/latest/user_guide/mamba.html

CadQuery Documentation, Release 2.4.0

:: Install to %USERPROFILE%\Mambaforge
curl -L -o mambaforge.exe https://github.com/conda-forge/miniforge/releases/latest/
→˓download/Mambaforge-Windows-x86_64.exe
start /wait "" mambaforge.exe /InstallationType=JustMe /RegisterPython=0 /NoRegistry=1 /
→˓NoScripts=1 /S /D=%USERPROFILE%\Mambaforge

:: Activate
cmd /K ""%USERPROFILE%/Mambaforge/Scripts/activate.bat" "%USERPROFILE%/Mambaforge""

It might be worthwhile to consider using /NoScripts=0 to have an activation shortcut added to the start menu.

After conda installation, create and activate a new conda environment to prepare for cadquery installation.

conda

mamba install is recommended over conda install for faster and less memory intensive cadquery installation.

Install the latest released version of cadquery:

conda create -n cq
conda activate cq
mamba install cadquery

or install a given version of cadquery1:

conda create -n cq231
conda activate cq231
mamba install cadquery=2.3.1

or install the latest dev version:

conda create -n cqdev
conda activate cqdev
mamba install -c cadquery cadquery=master

Add the conda-forge channel explicitly to the install command if needed (not using a miniforge based conda distribu-
tion).

3.2.2 Install via pip

CadQuery can be installed via pip on Linux, MacOS and Windows. Python versions 3.9 and newer are supported by
CadQuery, however a bleeding-edge Python installation may be broken due to lagging support in CadQuery’s complex
set of dependencies. If the pip installation method does not work for your system, you can try the conda installation
method above.

It is highly recommended that a virtual environment is used when installing CadQuery, although it is not strictly re-
quired. Installing CadQuery via pip requires an up-to-date version of pip, which can be obtained with the following
command line (or a slight variation thereof).:

1 Older releases may not be compatible with the latest OCP/OCCT version. In that case, specify the version of the dependency explicitly.

mamba install cadquery=2.2.0 ocp=7.7.0.*

10 Chapter 3. Table Of Contents

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

CadQuery Documentation, Release 2.4.0

python3 -m pip install --upgrade pip

Once a current version of pip is installed, CadQuery can be installed using the following command line.:

pip install cadquery

It is also possible to install the very latest changes directly from CadQuery’s GitHub repository, with the understanding
that sometimes breaking changes can occur. To install from the git repository, run the following command line.:

pip install git+https://github.com/CadQuery/cadquery.git

You should now have a working CadQuery installation, but developers or users who want to use CadQuery with
IPython/Jupyter or to set up a developer environment can read the rest of this section.

If you are installing CadQuery to use with IPython/Jupyter, you may want to run the following command line to install
the extra dependencies.:

pip install cadquery[ipython]

If you want to create a developer setup to contribute to CadQuery, the following command line will install all the
development dependencies that are needed.:

pip install cadquery[dev]

3.2.3 Adding a Nicer GUI via CQ-editor

If you prefer to have a GUI available, your best option is to use CQ-editor.

You can download the newest build here. Install and run the run.sh (Linux/MacOS) or run.bat (Windows) script in the
root CQ-editor directory. The CQ-editor window should launch.

Linux/MacOS

1. Download the installer (.sh script matching OS and platform).

2. Select the script in the file browser and make executable. Choose Properties from the context menu and select
Permissions, Allow executing file as a program (or similar, this step varies depending on OS and window
manager).

3. Select the script in the file browser and choose Run as Program (or similar).

Follow the prompts to accept the license and optionally change the installation location.

The default installation location is /home/<username>/cq-editor.

4. Launch the run.sh script from the file brower (again make executable first and then run as program).

To install from command line, download the installer using curl or wget or your favorite program and run the script.:

curl -LO https://github.com/CadQuery/CQ-editor/releases/download/nightly/CQ-editor-
→˓master-Linux-x86_64.sh
sh CQ-editor-master-Linux-x86_64.sh

To run from command.:

3.2. Installing CadQuery 11

https://github.com/CadQuery/CQ-editor
https://github.com/CadQuery/CQ-editor/releases/tag/nightly

CadQuery Documentation, Release 2.4.0

$HOME/cq-editor/run.sh

Windows

1. Download the installer (.exe) and double click it on the file browser.

Follow the prompts to accept the license and optionally change the installation location.

The default installation location is C:\Users\<username>\cq-editor.

2. Launch the run.bat script from the file brower (select Open).

To run from command line, activate the environment, then run cq-editor:

C:\Users\<username>\cq-editor\run.bat

Installing extra packages

mamba, and pip are bundled with the CQ-editor installer and available for package installation.

First activate the environment, then call mamba or pip to install additional packages.

On windows.:

C:\Users\<username>\cq-editor\Scripts\activate
mamba install <packagename>

On Linux/MacOS.:

source $HOME/cq-editor/bin/activate
mamba install <packagename>

3.2.4 Adding CQ-editor to an Existing Environment

You can install CQ-editor into a conda environment or Python virtual environment using conda (mamba) or pip.

Example cq-editor installation with conda (this installs both cadquery and cq-editor):

conda create -n cqdev
conda activate cqdev
mamba install -c cadquery cq-editor=master

Example cq-editor installation with pip:

pip install PyQt5 spyder pyqtgraph logbook
pip install git+https://github.com/CadQuery/CQ-editor.git

12 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.2.5 Jupyter

Viewing models in Jupyter is another good option for a GUI. Models are rendered in the browser.

The cadquery library works out-of-the-box with Jupyter. First install cadquery, then install JupyterLab in the same
conda or Python venv.:

conda

mamba install jupyterlab

pip

pip install jupyterlab

Start JupyterLab:

jupyter lab

JupyterLab will open automatically in your browser. Create a Notebook to interactively edit/view CadQuery models.

Call display to show the model.:

display(<Workplane, Shape, or Assembly object>)

3.2.6 Test Your Installation

If all has gone well, you can open a command line/prompt, and type:

$ python
$ import cadquery
$ cadquery.Workplane('XY').box(1,2,3).toSvg()

You should see raw SVG output displayed on the command line if the CadQuery installation was successful.

Note:

3.3 QuickStart

Want a quick glimpse of what CadQuery can do? This quickstart will demonstrate the basics of CadQuery using a
simple example

3.3. QuickStart 13

https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html

CadQuery Documentation, Release 2.4.0

3.3.1 Prerequisites: CadQuery and CQ-editor installation

If you have not already done so, follow the Installing CadQuery, to install CadQuery and CQ-editor.

After installation, run CQ-editor:

Find the CadQuery code editor, on the left side. You’ll see that we start out with the script for a simple block.

3.3.2 What we’ll accomplish

We will build a fully parametric bearing pillow block in this quickstart. Our finished object will look like this:

We would like our block to have these features:

1. It should be sized to hold a single 608 (‘skate’) bearing, in the center of the block.

2. It should have counter-bored holes for M2 socket head cap screws at the corners.

3. The length and width of the block should be configurable by the user to any reasonable size.

A human would describe this as:

“A rectangular block 80mm x 60mm x 10mm , with counter-bored holes for M2 socket head cap screws at
the corners, and a circular pocket 22mm in diameter in the middle for a bearing.”

Human descriptions are very elegant, right? Hopefully our finished script will not be too much more complex than this
human-oriented description.

Let’s see how we do.

14 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.3.3 Start With A single, simple Plate

Let’s start with a simple model that makes nothing but a rectangular block, but with place-holders for the dimensions.
Paste this into the code editor:

1 height = 60.0
2 width = 80.0
3 thickness = 10.0
4

5 # make the base
6 result = cq.Workplane("XY").box(height, width, thickness)
7

8 # Render the solid
9 show_object(result)

Press the green Render button in the toolbar to run the script. You should see our base object.

Nothing special, but its a start!

3.3.4 Add the Holes

Our pillow block needs to have a 22mm diameter hole in the center to hold the bearing.

This modification will do the trick:

1 height = 60.0
2 width = 80.0
3 thickness = 10.0
4 diameter = 22.0
5

6 # make the base
7 result = (
8 cq.Workplane("XY")
9 .box(height, width, thickness)

10 .faces(">Z")
11 .workplane()
12 .hole(diameter)
13)
14

(continues on next page)

3.3. QuickStart 15

CadQuery Documentation, Release 2.4.0

(continued from previous page)

15 # Render the solid
16 show_object(result)

Rebuild your model by clicking the Render button. Your block should look like this:

The code is pretty compact, let’s step through it.

Line 4 adds a new parameter, diameter, for the diameter of the hole

Lines 10-12, we’re adding the hole. cadquery.Workplane.faces() selects the top-most face in the Z direction, and
then cadquery.Workplane.workplane() begins a new workplane located on this face. The center of this workplane
is located at the center of mass of the shape, which in this case is the center of the plate. Finally, cadquery.Workplane.
hole() drills a hole through the part, 22mm in diameter.

Note: Don’t worry about the CadQuery syntax now.. you can learn all about it in the API Reference later.

3.3.5 More Holes

Ok, that hole was not too hard, but what about the counter-bored holes in the corners?

An M2 Socket head cap screw has these dimensions:

• Head Diameter : 3.8 mm

• Head height : 2.0 mm

• Clearance Hole : 2.4 mm

• CounterBore diameter : 4.4 mm

The centers of these holes should be 6mm from the edges of the block. And, we want the block to work correctly even
when the block is re-sized by the user.

Don’t tell me we’ll have to repeat the steps above 8 times to get counter-bored holes? Good news!– we can get the job
done with just a few lines of code. Here’s the code we need:

1 height = 60.0
2 width = 80.0
3 thickness = 10.0
4 diameter = 22.0
5 padding = 12.0

(continues on next page)

16 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

6

7 # make the base
8 result = (
9 cq.Workplane("XY")

10 .box(height, width, thickness)
11 .faces(">Z")
12 .workplane()
13 .hole(diameter)
14 .faces(">Z")
15 .workplane()
16 .rect(height - padding, width - padding, forConstruction=True)
17 .vertices()
18 .cboreHole(2.4, 4.4, 2.1)
19)
20 # Render the solid
21 show_object(result)

After clicking the Render button to re-execute the model, you should see something like this:

There is quite a bit going on here, so let’s break it down a bit.

Line 5 creates a new padding parameter that decides how far the holes are from the edges of the plate.

Lines 11-12 selects the top-most face of the block, and creates a workplane on the top of that face, which we’ll use to
define the centers of the holes in the corners.

There are a couple of things to note about this line:

1. The cadquery.Workplane.rect() function draws a rectangle. forConstruction=True tells CadQuery that
this rectangle will not form a part of the solid, but we are just using it to help define some other geometry.

2. Unless you specify otherwise, a rectangle is drawn with its center on the current workplane center– in this case,
the center of the top face of the block. So this rectangle will be centered on the face.

Line 16 draws a rectangle 12mm smaller than the overall length and width of the block, which we will use to locate
the corner holes. We’ll use the vertices (corners) of this rectangle to locate the holes. The rectangle’s center is at the
center of the workplane, which in this case coincides with the center of the bearing hole.

Line 17 selects the vertices of the rectangle, which we will use for the centers of the holes. The cadquery.Workplane.
vertices() function selects the corners of the rectangle.

Line 18 uses the cboreHole function to draw the holes. The cadquery.Workplane.cboreHole() function is a handy
CadQuery function that makes a counterbored hole. Like most other CadQuery functions, it operates on the values on

3.3. QuickStart 17

CadQuery Documentation, Release 2.4.0

the stack. In this case, since we selected the four vertices before calling the function, the function operates on each of
the four points– which results in a counterbore hole at each of the rectangle corners.

3.3.6 Filleting

Almost done. Let’s just round the corners of the block a bit. That’s easy, we just need to select the edges and then fillet
them:

We can do that using the preset dictionaries in the parameter definition:

1 height = 60.0
2 width = 80.0
3 thickness = 10.0
4 diameter = 22.0
5 padding = 12.0
6

7 # make the base
8 result = (
9 cq.Workplane("XY")

10 .box(height, width, thickness)
11 .faces(">Z")
12 .workplane()
13 .hole(diameter)
14 .faces(">Z")
15 .workplane()
16 .rect(height - padding, width - padding, forConstruction=True)
17 .vertices()
18 .cboreHole(2.4, 4.4, 2.1)
19 .edges("|Z")
20 .fillet(2.0)
21)
22

23 # Render the solid
24 show_object(result)

Line 20 fillets the edges using the cadquery.Workplane.fillet() method.

To grab the right edges, the cadquery.Workplane.edges() selects all of the edges that are parallel to the Z axis
(”|Z”),

The finished product looks like this:

18 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.3.7 Exporting

If you want to fabricate a physical object you need to export the result to STL or DXF. Additionally, exporting as STEP
for post-processing in another CAD tool is also possible.

This can be easily accomplished using the cadquery.exporters.export() function:

1 height = 60.0
2 width = 80.0
3 thickness = 10.0
4 diameter = 22.0
5 padding = 12.0
6

7 # make the base
8 result = (
9 cq.Workplane("XY")

10 .box(height, width, thickness)
11 .faces(">Z")
12 .workplane()
13 .hole(diameter)
14 .faces(">Z")
15 .workplane()
16 .rect(height - padding, width - padding, forConstruction=True)
17 .vertices()
18 .cboreHole(2.4, 4.4, 2.1)
19 .edges("|Z")
20 .fillet(2.0)
21)
22

23 # Render the solid
24 show_object(result)
25

26 # Export
27 cq.exporters.export(result, "result.stl")
28 cq.exporters.export(result.section(), "result.dxf")
29 cq.exporters.export(result, "result.step")

3.3.8 Done!

You just made a parametric, model that can generate pretty much any bearing pillow block with <30 lines of code.

3.3.9 Want to learn more?

• The Examples contains lots of examples demonstrating cadquery features

• The API Reference is a good overview of language features grouped by function

• The CadQuery Class Summary is the hard-core listing of all functions available.

3.3. QuickStart 19

CadQuery Documentation, Release 2.4.0

3.4 Design Principles

3.4.1 Principle 1: Intuitive Construction

CadQuery aims to make building models using python scripting easy and intuitive. CadQuery strives to allow scripts
to read roughly as a human would describe an object verbally.

For example, consider this object:

A human would describe this as:

“A block 80mm square x 30mm thick , with countersunk holes for M2 socket head cap screws at the corners,
and a circular pocket 22mm in diameter in the middle for a bearing”

The goal is to have the CadQuery script that produces this object be as close as possible to the English phrase a human
would use.

20 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.4.2 Principle 2: Capture Design Intent

The features that are not part of the part description above are just as important as those that are. For example, most
humans will assume that:

• The countersunk holes are spaced a uniform distance from the edges

• The circular pocket is in the center of the block, no matter how big the block is

If you have experience with 3D CAD systems, you also know that there is a key design intent built into this object.
After the base block is created, how the hole is located is key. If it is located from one edge, changing the block size
will have a different effect than if the hole is located from the center.

Many scripting languages do not provide a way to capture design intent– because they require that you always work in
global coordinates. CadQuery is different– you can locate features relative to others in a relative way– preserving the
design intent just like a human would when creating a drawing or building an object.

In fact, though many people know how to use 3D CAD systems, few understand how important the way that an object
is built impact its maintainability and resiliency to design changes.

3.4.3 Principle 3: Plugins as first class citizens

Any system for building 3D models will evolve to contain an immense number of libraries and feature builders. It is
important that these can be seamlessly included into the core and used alongside the built in libraries. Plugins should
be easy to install and familiar to use.

3.4.4 Principle 4: CAD models as source code makes sense

It is surprising that the world of 3D CAD is primarily dominated by systems that create opaque binary files. Just like
the world of software, CAD models are very complex.

CAD models have many things in common with software, and would benefit greatly from the use of tools that are
standard in the software industry, such as:

1. Easily re-using features between objects

2. Storing objects using version control systems

3. Computing the differences between objects by using source control tools

4. Share objects on the Internet

5. Automate testing and generation by allowing objects to be built from within libraries

CadQuery is designed to make 3D content creation easy enough that the above benefits can be attained without more
work than using existing ‘opaque’, ‘point and click’ solutions.

3.5 Concepts

3.5.1 3D BREP Topology Concepts

Before talking about CadQuery, it makes sense to talk a little about 3D CAD topology. CadQuery is based upon
the OpenCascade kernel, which uses Boundary Representations (BREP) for objects. This just means that objects are
defined by their enclosing surfaces.

When working in a BREP system, these fundamental constructs exist to define a shape (working up the food chain):

3.5. Concepts 21

CadQuery Documentation, Release 2.4.0

vertex
a single point in space

edge
a connection between two or more vertices along a particular path (called a curve)

wire
a collection of edges that are connected together.

face
a set of edges or wires that enclose a surface

shell
a collection of faces that are connected together along some of their edges

solid
a shell that has a closed interior

compound
a collection of solids

When using CadQuery, all of these objects are created, hopefully with the least possible work. In the actual CAD
kernel, there is another set of Geometrical constructs involved as well. For example, an arc-shaped edge will hold a
reference to an underlying curve that is a full circle, and each linear edge holds underneath it the equation for a line.
CadQuery shields you from these constructs.

3.5.2 Workplane class

The Workplane class contains the currently selected objects (a list of Shapes, Vectors or Locations in the objects
attribute), the modelling context (in the ctx attribute), and CadQuery’s fluent api methods. It is the main class that
users will instantiate.

See API Reference to learn more.

3.5.3 Workplanes

Most CAD programs use the concept of Workplanes. If you have experience with other CAD programs you will
probably feel comfortable with CadQuery’s Workplanes, but if you don’t have experience then they are an essential
concept to understand.

Workplanes represent a plane in space, from which other features can be located. They have a center point and a local
coordinate system. Most methods that create an object do so relative to the current workplane.

Usually the first workplane created is the “XY” plane, also known as the “front” plane. Once a solid is defined the most
common way to create a workplane is to select a face on the solid that you intend to modify and create a new workplane
relative to it. You can also create new workplanes in anywhere in world coordinate system, or relative to other planes
using offsets or rotations.

The most powerful feature of workplanes is that they allow you to work in 2D space in the coordinate system of
the workplane, and then CadQuery will transform these points from the workplane coordinate system to the world
coordinate system so your 3D features are located where you intended. This makes scripts much easier to create and
maintain.

See cadquery.Workplane to learn more.

22 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.5.4 2D Construction

Once you create a workplane, you can work in 2D, and then later use the features you create to make 3D objects. You’ll
find all of the 2D constructs you expect – circles, lines, arcs, mirroring, points, etc.

See 2D Operations to learn more.

3.5.5 3D Construction

You can construct 3D primitives such as boxes, wedges, cylinders and spheres directly. You can also sweep, extrude,
and loft 2D geometry to form 3D features. Of course the basic primitive operations are also available.

See 3D Operations to learn more.

3.5.6 Selectors

Selectors allow you to select one or more features, in order to define new features. As an example, you might extrude
a box, and then select the top face as the location for a new feature. Or, you might extrude a box, and then select all of
the vertical edges so that you can apply a fillet to them.

You can select Vertices, Edges, Faces, Solids, and Wires using selectors.

Think of selectors as the equivalent of your hand and mouse, if you were to build an object using a conventional CAD
system.

See Selectors to learn more.

3.5.7 Construction Geometry

Construction geometry are features that are not part of the object, but are only defined to aid in building the object. A
common example might be to define a rectangle, and then use the corners to define the location of a set of holes.

Most CadQuery construction methods provide a forConstruction keyword, which creates a feature that will only be
used to locate other features.

3.5.8 The Stack

As you work in CadQuery, each operation returns a new Workplane object with the result of that operations. Each
Workplane object has a list of objects, and a reference to its parent.

You can always go backwards to older operations by removing the current object from the stack. For example:

Workplane(someObject).faces(">Z").first().vertices()

returns a CadQuery object that contains all of the vertices on the highest face of someObject. But you can always move
backwards in the stack to get the face as well:

Workplane(someObject).faces(">Z").first().vertices().end()

You can browse stack access methods here: Stack and Selector Methods.

3.5. Concepts 23

CadQuery Documentation, Release 2.4.0

3.5.9 Chaining

All Workplane methods return another Workplane object, so that you can chain the methods together fluently. Use the
core Workplane methods to get at the objects that were created.

Each time a new Workplane object is produced during these chained calls, it has a parent attribute that points to the
Workplane object that created it. Several CadQuery methods search this parent chain, for example when searching for
the context solid. You can also give a Workplane object a tag, and further down your chain of calls you can refer back
to this particular object using its tag.

3.5.10 The Context Solid

Most of the time, you are building a single object, and adding features to that single object. CadQuery watches your
operations, and defines the first solid object created as the ‘context solid’. After that, any features you create are
automatically combined (unless you specify otherwise) with that solid. This happens even if the solid was created a
long way up in the stack. For example:

Workplane("XY").box(1, 2, 3).faces(">Z").circle(0.25).extrude(1)

Will create a 1x2x3 box, with a cylindrical boss extending from the top face. It was not necessary to manually combine
the cylinder created by extruding the circle with the box, because the default behavior for extrude is to combine the
result with the context solid. The hole() method works similarly – CadQuery presumes that you want to subtract the
hole from the context solid.

If you want to avoid this, you can specify combine=False, and CadQuery will create the solid separately.

3.5.11 Iteration

CAD models often have repeated geometry, and its really annoying to resort to for loops to construct features. Many
CadQuery methods operate automatically on each element on the stack, so that you don’t have to write loops. For
example, this:

Workplane("XY").box(1, 2, 3).faces(">Z").vertices().circle(0.5)

Will actually create 4 circles, because vertices() selects 4 vertices of a rectangular face, and the circle() method
iterates on each member of the stack.

This is really useful to remember when you author your own plugins. cadquery.Workplane.each() is useful for
this purpose.

3.5.12 CadQuery API layers

Once you start to dive a bit more into CadQuery, you may find yourself a bit confused juggling between different
types of objects the CadQuery APIs can return. This chapter aims to give an explanation on this topic and to provide
background on the underlying implementation and kernel layers so you can leverage more of CadQuery functionality.

CadQuery is composed of 3 different API, which are implemented on top of each other.

1. The Fluent API

2. The Direct API

3. The OCCT API

24 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

The Fluent API

What we call the fluent API is what you work with when you first start using CadQuery, the Workplane class and all
its methods defines the Fluent API. This is the API you will use and see most of the time, it’s fairly easy to use and it
simplifies a lot of things for you. A classic example could be :

part = Workplane("XY").box(1, 2, 3).faces(">Z").vertices().circle(0.5).cutThruAll()

Here we create a Workplane object on which we subsequently call several methods to create our part. A general way
of thinking about the Fluent API is to consider the Workplane as your part object and all it’s methods as operations
that will affect your part. Often you will start with an empty Workplane, then add more features by calling Workplane
methods.

This hierarchical structure of operations modifying a part is well seen with the traditional code style used in CadQuery
code. Code written with the CadQuery fluent API will often look like this :

part = Workplane("XY").box(1, 2, 3).faces(">Z").vertices().circle(0.5).cutThruAll()

Or like this :

part = Workplane("XY")
part = part.box(1, 2, 3)
part = part.faces(">Z")
part = part.vertices()
part = part.circle(0.5)
part = part.cutThruAll()

Note: While the first code style is what people default to, it’s important to note that when you write your code like this
it’s equivalent as writting it on a single line. It’s then more difficult to debug as you cannot visualize each operation
step by step, which is a functionality that is provided by the CQ-Editor debugger for example.

The Direct API

While the fluent API exposes much functionality, you may find scenarios that require extra flexibility or require working
with lower level objects.

The direct API is the API that is called by the fluent API under the hood. The 9 topological classes and their methods
compose the direct API. These classes actually wrap the equivalent Open CASCADE Technology (OCCT) classes.
The 9 topological classes are :

1. Shape

2. Compound

3. CompSolid

4. Solid

5. Shell

6. Face

7. Wire

8. Edge

9. Vertex

3.5. Concepts 25

CadQuery Documentation, Release 2.4.0

Each class has its own methods to create and/or edit shapes of their respective type. As already explained in Concepts
there is also some kind of hierarchy in the topological classes. A Wire is made of several edges which are themselves
made of several vertices. This means you can create geometry from the bottom up and have a lot of control over it.

For example we can create a circular face like so

circle_wire = Wire.makeCircle(10, Vector(0, 0, 0), Vector(0, 0, 1))
circular_face = Face.makeFromWires(circle_wire, [])

Note: In CadQuery (and OCCT) all the topological classes are shapes, the Shape class is the most abstract topological
class. The topological class inherits Mixin3D or Mixin1D which provide aditional methods that are shared between
the classes that inherits them.

The direct API as its name suggests doesn’t provide a parent/children data structure, instead each method call directly
returns an object of the specified topological type. It is more verbose than the fluent API and more tedious to work
with, but as it offers more flexibility (you can work with faces, which is something you can’t do in the fluent API) it is
sometimes more convenient than the fluent API.

The OCCT API

Finally we are discussing about the OCCT API. The OCCT API is the lowest level of CadQuery. The direct API is
built upon the OCCT API, where the OCCT API in CadQuery is available through OCP. OCP are the Python bindings
of the OCCT C++ libraries CadQuery uses. This means you have access to (almost) all the OCCT C++ libraries in
Python and in CadQuery. Working with the OCCT API will give you the maximum flexibility and control over you
designs, it is however very verbose and difficult to use. You will need to have a strong knowledge of the different C++
libraries to be able to achieve what you want. To obtain this knowledge the most obvious ways are :

1. Read the direct API source code, since it is build upon the OCCT API it is full of example usage.

2. Go through the C++ documentation

Note: The general way of importing a specific class of the OCCT API is

from OCP.thePackageName import theClassName

For example if you want to use the class BRepPrimAPI_MakeBox. You will go by the following

from OCP.BRepPrimAPI import BRepPrimAPI_MakeBox

The package name of any class is written at the top of the documentation page. Often it’s written in the class name
itself as a prefix.

Going back and forth between the APIs

While the 3 APIs provide 3 different layer of complexity and functionality you can mix the 3 layers as you wish. Below
is presented the different ways you can interact with the different API layers.

26 Chapter 3. Table Of Contents

https://dev.opencascade.org/doc/overview/html/
https://dev.opencascade.org/doc/refman/html/class_b_rep_prim_a_p_i___make_box.html

CadQuery Documentation, Release 2.4.0

Fluent API <=> Direct API

Here are all the possibilities you have to get an object from the Direct API (i.e a topological object).

You can end the Fluent API call chain and get the last object on the stack with Workplane.val() alternatively you
can get all the objects with Workplane.vals()

>>> box = Workplane().box(10, 5, 5)
>>> print(type(box))
<class cadquery.cq.Workplane>

>>> box = Workplane().box(10, 5, 5).val()
>>> print(type(box))
<class cadquery.occ_impl.shapes.Solid>

If you are only interested in getting the context solid of your Workplane, you can use Workplane.findSolid():

>>> part = Workplane().box(10,5,5).circle(3).val()
>>> print(type(part))
<class cadquery.cq.Wire>

>>> part = Workplane().box(10,5,5).circle(3).findSolid()
>>> print(type(part))
<class cadquery.occ_impl.shapes.Compound>
The return type of findSolid is either a Solid or a Compound object

If you want to go the other way around i.e using objects from the topological API in the Fluent API here are your
options :

You can pass a topological object as a base object to the Workplane object.

solid_box = Solid.makeBox(10, 10, 10)
part = Workplane(obj=solid_box)
And you can continue your modelling in the fluent API
part = part.faces(">Z").circle(1).extrude(10)

You can add a topological object as a new operation/step in the Fluent API call chain with Workplane.newObject()

circle_wire = Wire.makeCircle(1, Vector(0, 0, 0), Vector(0, 0, 1))
box = Workplane().box(10, 10, 10).newObject([circle_wire])
And you can continue modelling
box = (

box.toPending().cutThruAll()
) # notice the call to `toPending` that is needed if you want to use it in a subsequent␣
→˓operation

3.5. Concepts 27

CadQuery Documentation, Release 2.4.0

Direct API <=> OCCT API

Every object of the Direct API stores its OCCT equivalent object in its wrapped attribute.:

>>> box = Solid.makeBox(10,5,5)
>>> print(type(box))
<class cadquery.occ_impl.shapes.Solid>

>>> box = Solid.makeBox(10,5,5).wrapped
>>> print(type(box))
<class OCP.TopoDS.TopoDS_Solid>

If you want to cast an OCCT object into a Direct API one you can just pass it as a parameter of the intended class:

>>> occt_box = BRepPrimAPI_MakeBox(5,5,5).Solid()
>>> print(type(occt_box))
<class OCP.TopoDS.TopoDS_Solid>

>>> direct_api_box = Solid(occt_box)
>>> print(type(direct_api_box))
<class cadquery.occ_impl.shapes.Solid>

Note: You can cast into the direct API the types found here

3.5.13 Multimethods

CadQuery uses Multimethod to allow a call to a method to be dispatched depending on the types of the argu-
ments. An example is arc(), where a_sketch.arc((1, 2), (2, 3)) would be dispatched to one method but
a_sketch.arc((1, 2), (2, 3), (3, 4)) would be dispatched to a different method. For multimethods to work,
you should not use keyword arguments to specify positional parameters. For example, you should not write a_sketch.
arc(p1=(1, 2), p2=(2, 3), p3=(3, 4)), instead you should use the previous example. Note CadQuery makes
an attempt to fall back on the first registered multimethod in the event of a dispatch error, but it is still best practice to
not use keyword arguments to specify positional arguments in CadQuery.

3.5.14 An Introspective Example

Note: If you are just beginning with CadQuery then you can leave this example for later. If you have some experience
with creating CadQuery models and now you want to read the CadQuery source to better understand what your code
does, then it is recommended you read this example first.

To demonstrate the above concepts, we can define more detailed string representations for the Workplane, Plane and
CQContext classes and patch them in:

import cadquery as cq

def tidy_repr(obj):
"""Shortens a default repr string"""

(continues on next page)

28 Chapter 3. Table Of Contents

https://dev.opencascade.org/doc/refman/html/class_topo_d_s___shape.html
https://coady.github.io/multimethod/

CadQuery Documentation, Release 2.4.0

(continued from previous page)

return repr(obj).split(".")[-1].rstrip(">")

def _ctx_str(self):
return (

tidy_repr(self)
+ ":\n"
+ f" pendingWires: {self.pendingWires}\n"
+ f" pendingEdges: {self.pendingEdges}\n"
+ f" tags: {self.tags}"

)

cq.cq.CQContext.__str__ = _ctx_str

def _plane_str(self):
return (

tidy_repr(self)
+ ":\n"
+ f" origin: {self.origin.toTuple()}\n"
+ f" z direction: {self.zDir.toTuple()}"

)

cq.occ_impl.geom.Plane.__str__ = _plane_str

def _wp_str(self):
out = tidy_repr(self) + ":\n"
out += f" parent: {tidy_repr(self.parent)}\n" if self.parent else " no parent\n"
out += f" plane: {self.plane}\n"
out += f" objects: {self.objects}\n"
out += f" modelling context: {self.ctx}"
return out

cq.Workplane.__str__ = _wp_str

Now we can make a simple part and examine the Workplane and CQContext objects at each step. The final part looks
like:

part = (
cq.Workplane()
.box(1, 1, 1)
.tag("base")
.wires(">Z")
.toPending()
.translate((0.1, 0.1, 1.0))
.toPending()
.loft()
.faces(">>X", tag="base")

(continues on next page)

3.5. Concepts 29

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.workplane(centerOption="CenterOfMass")

.circle(0.2)

.extrude(1)
)

Note: Some of the modelling process for this part is a bit contrived and not a great example of fluent CadQuery
techniques.

The start of our chain of calls is:

part = cq.Workplane()
print(part)

Which produces the output:

Workplane object at 0x2760:
no parent
plane: Plane object at 0x2850:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: []
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {}

This is simply an empty Workplane. Being the first Workplane in the chain, it does not have a parent. The plane
attribute contains a Plane object that describes the XY plane.

Now we create a simple box. To keep things short, the print(part) line will not be shown for the rest of these code
blocks:

part = part.box(1, 1, 1)

Which produces the output:

Workplane object at 0xaa90:
parent: Workplane object at 0x2760
plane: Plane object at 0x3850:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Solid object at 0xbbe0>]
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {}

The first thing to note is that this is a different Workplane object to the previous one, and in the parent attribute
of this Workplane is our previous Workplane. Returning a new instance of Workplane is the normal behaviour of
most Workplane methods (with some exceptions, as will be shown below) and this is how the chaining concept is
implemented.

Secondly, the modelling context object is the same as the one in the previous Workplane, and this one modelling

30 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

context at 0x2730 will be shared between every Workplane object in this chain. If we instantiate a new Workplane
with part2 = cq.Workplane(), then this part2 would have a different instance of the CQContext attached to it.

Thirdly, in our objects list is a single Solid object, which is the box we just created.

Often when creating models you will find yourself wanting to refer back to a specific Workplane object, perhaps
because it is easier to select the feature you want in this earlier state, or because you want to reuse a plane. Tags offer
a way to refer back to a previous Workplane. We can tag the Workplane that contains this basic box now:

part = part.tag("base")

The string representation of part is now:

Workplane object at 0xaa90:
parent: Workplane object at 0x2760
plane: Plane object at 0x3850:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Solid object at 0xbbe0>]
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

The tags attribute of the modelling context is simply a dict associating the string name given by the tag() method
to the Workplane. Methods such as workplaneFromTagged() and selection methods like edges() can operate
on a tagged Workplane. Note that unlike the part = part.box(1, 1, 1) step where we went from Workplane
object at 0x2760 to Workplane object at 0xaa90, the tag()method has returned the same object at 0xaa90.
This is unusual for a Workplane method.

The next step is:

part = part.faces(">>Z")

The output is:

Workplane object at 0x8c40:
parent: Workplane object at 0xaa90
plane: Plane object at 0xac40:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Face object at 0x3c10>]
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

Our selection method has taken the Solid from the objects list of the previous Workplane, found the face with it’s
center furthest in the Z direction, and placed that face into the objects attribute. The Solid representing the box we
are modelling is gone, and when a Workplane method needs to access that solid it searches through the parent chain
for the nearest solid. This action can also be done by a user through the findSolid() method.

Now we want to select the boundary of this Face (a Wire), so we use:

part = part.wires()

The output is now:

3.5. Concepts 31

CadQuery Documentation, Release 2.4.0

Workplane object at 0x6880:
parent: Workplane object at 0x8c40
plane: Plane object at 0x38b0:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Wire object at 0xaca0>]
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

Modelling operations take their wires and edges from the modelling context’s pending lists. In order to use the loft()
command further down the chain, we need to push this wire to the modelling context with:

part = part.toPending()

Now we have:

Workplane object at 0x6880:
parent: Workplane object at 0x8c40
plane: Plane object at 0x38b0:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Wire object at 0xaca0>]
modelling context: CQContext object at 0x2730:
pendingWires: [<cadquery.occ_impl.shapes.Wire object at 0xaca0>]
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

The Wire object that was only in the objects attribute before is now also in the modelling context’s pendingWires.
The toPending() method is also another of the unusual methods that return the same Workplane object instead of a
new one.

To set up the other side of the loft() command further down the chain, we translate the wire in objects by calling:

part = part.translate((0.1, 0.1, 1.0))

Now the string representation of part looks like:

Workplane object at 0x3a00:
parent: Workplane object at 0x6880
plane: Plane object at 0xac70:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Wire object at 0x35e0>]
modelling context: CQContext object at 0x2730:
pendingWires: [<cadquery.occ_impl.shapes.Wire object at 0xaca0>]
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

It may look similar to the previous step, but the Wire object in objects is different. To get this wire into the pending
wires list, again we use:

part = part.toPending()

32 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

The result:

Workplane object at 0x3a00:
parent: Workplane object at 0x6880
plane: Plane object at 0xac70:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Wire object at 0x35e0>]
modelling context: CQContext object at 0x2730:
pendingWires: [<cadquery.occ_impl.shapes.Wire object at 0xaca0>, <cadquery.occ_impl.

→˓shapes.Wire object at 0x7f5c7f5c35e0>]
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

The modelling context’s pendingWires attribute now contains the two wires we want to loft between, and we simply
call:

part = part.loft()

After the loft operation, our Workplane looks quite different:

Workplane object at 0x32b0:
parent: Workplane object at 0x3a00
plane: Plane object at 0x3d60:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Compound object at 0xad30>]
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

In the cq.Workplane.objects attribute we now have one Compound object and the modelling context’s
pendingWires has been cleared by loft().

Note: To inspect the Compound object further you can use val() or findSolid() to get at the Compound object,
then use cadquery.Shape.Solids() to return a list of the Solid objects contained in the Compound , which in this
example will be a single Solid object. For example:

>>> a_compound = part.findSolid()
>>> a_list_of_solids = a_compound.Solids()
>>> len(a_list_of_solids)
1

Now we will create a small cylinder protruding from a face on the original box. We need to set up a workplane to draw
a circle on, so firstly we will select the correct face:

part = part.faces(">>X", tag="base")

Which results in:

Workplane object at 0x3f10:
parent: Workplane object at 0x32b0

(continues on next page)

3.5. Concepts 33

CadQuery Documentation, Release 2.4.0

(continued from previous page)

plane: Plane object at 0xefa0:
origin: (0.0, 0.0, 0.0)
z direction: (0.0, 0.0, 1.0)

objects: [<cadquery.occ_impl.shapes.Face object at 0x3af0>]
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

We have the desired Face in the objects attribute, but the plane has not changed yet. To create the new plane we
use the Workplane.workplane() method:

part = part.workplane()

Now:

Workplane object at 0xe700:
parent: Workplane object at 0x3f10
plane: Plane object at 0xe730:
origin: (0.5, 0.0, 0.0)
z direction: (1.0, 0.0, 0.0)

objects: []
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

The objects list has been cleared and the Plane object has a local Z direction in the global X direction. Since the
base of the plane is the side of the box, the origin is offset in the X direction.

Onto this plane we can draw a circle:

part = part.circle(0.2)

Now:

Workplane object at 0xe790:
parent: Workplane object at 0xe700
plane: Plane object at 0xaf40:
origin: (0.5, 0.0, 0.0)
z direction: (1.0, 0.0, 0.0)

objects: [<cadquery.occ_impl.shapes.Wire object at 0xe610>]
modelling context: CQContext object at 0x2730:
pendingWires: [<cadquery.occ_impl.shapes.Wire object at 0xe610>]
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

The circle() method - like all 2D drawing methods - has placed the circle into both the objects attribute (where it
will be cleared during the next modelling step), and the modelling context’s pending wires (where it will persist until
used by another Workplane method).

The next step is to extrude this circle and create a cylindrical protrusion:

part = part.extrude(1, clean=False)

34 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Now:

Workplane object at 0xafd0:
parent: Workplane object at 0xe790
plane: Plane object at 0x3e80:
origin: (0.5, 0.0, 0.0)
z direction: (1.0, 0.0, 0.0)

objects: [<cadquery.occ_impl.shapes.Compound object at 0xaaf0>]
modelling context: CQContext object at 0x2730:
pendingWires: []
pendingEdges: []
tags: {'base': <cadquery.cq.Workplane object at 0xaa90>}

The extrude() method has cleared all the pending wires and edges. The objects attribute contains the final
Compound object that is shown in the 3D view above.

Note: The extrude() has an argument for clean which defaults to True. This extrudes the pending wires (creating
a new Workplane object), then runs the clean()method to refine the result, creating another Workplane. If you were
to run the example with the default clean=True then you would see an intermediate Workplane object in parent
rather than the object from the previous step.

3.5.15 Assemblies

Simple models can be combined into complex, possibly nested, assemblies.

3.5. Concepts 35

CadQuery Documentation, Release 2.4.0

A simple example could look as follows:

from cadquery import *

w = 10
d = 10
h = 10

(continues on next page)

36 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

part1 = Workplane().box(2 * w, 2 * d, h)
part2 = Workplane().box(w, d, 2 * h)
part3 = Workplane().box(w, d, 3 * h)

assy = (
Assembly(part1, loc=Location(Vector(-w, 0, h / 2)))
.add(

part2, loc=Location(Vector(1.5 * w, -0.5 * d, h / 2)), color=Color(0, 0, 1, 0.5)
)
.add(part3, loc=Location(Vector(-0.5 * w, -0.5 * d, 2 * h)), color=Color("red"))

)

Resulting in:

3.5. Concepts 37

CadQuery Documentation, Release 2.4.0

Note that the locations of the children parts are defined with respect to their parents - in the above example part3 will
be located at (-5,-5,20) in the global coordinate system. Assemblies with different colors can be created this way and
exported to STEP or the native OCCT xml format.

You can browse assembly related methods here: Assemblies.

38 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.5.16 Assemblies with constraints

Sometimes it is not desirable to define the component positions explicitly but rather use constraints to obtain a fully
parametric assembly. This can be achieved in the following way:

from cadquery import *

w = 10
d = 10
h = 10

part1 = Workplane().box(2 * w, 2 * d, h)
part2 = Workplane().box(w, d, 2 * h)
part3 = Workplane().box(w, d, 3 * h)

assy = (
Assembly(part1, name="part1", loc=Location(Vector(-w, 0, h / 2)))
.add(part2, name="part2", color=Color(0, 0, 1, 0.5))
.add(part3, name="part3", color=Color("red"))
.constrain("part1@faces@>Z", "part3@faces@<Z", "Axis")
.constrain("part1@faces@>Z", "part2@faces@<Z", "Axis")
.constrain("part1@faces@>Y", "part3@faces@<Y", "Axis")
.constrain("part1@faces@>Y", "part2@faces@<Y", "Axis")
.constrain("part1@vertices@>(-1,-1,1)", "part3@vertices@>(-1,-1,-1)", "Point")
.constrain("part1@vertices@>(1,-1,-1)", "part2@vertices@>(-1,-1,-1)", "Point")
.solve()

)

This code results in identical object as one from the previous section. The added benefit is that with changing parameters
w, d, h the final locations will be calculated automatically. It is admittedly dense and can be made clearer using tags.
Tags can be directly referenced when constructing the constraints:

from cadquery import *

w = 10
d = 10
h = 10

part1 = Workplane().box(2 * w, 2 * d, h)
part2 = Workplane().box(w, d, 2 * h)
part3 = Workplane().box(w, d, 3 * h)

part1.faces(">Z").edges("<X").vertices("<Y").tag("pt1")
part1.faces(">X").edges("<Z").vertices("<Y").tag("pt2")
part3.faces("<Z").edges("<X").vertices("<Y").tag("pt1")
part2.faces("<X").edges("<Z").vertices("<Y").tag("pt2")

assy1 = (
Assembly(part1, name="part1", loc=Location(Vector(-w, 0, h / 2)))
.add(part2, name="part2", color=Color(0, 0, 1, 0.5))
.add(part3, name="part3", color=Color("red"))
.constrain("part1@faces@>Z", "part3@faces@<Z", "Axis")
.constrain("part1@faces@>Z", "part2@faces@<Z", "Axis")
.constrain("part1@faces@>Y", "part3@faces@<Y", "Axis")

(continues on next page)

3.5. Concepts 39

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.constrain("part1@faces@>Y", "part2@faces@<Y", "Axis")

.constrain("part1?pt1", "part3?pt1", "Point")

.constrain("part1?pt2", "part2?pt2", "Point")

.solve()
)

The following constraints are currently implemented:

Axis
two normal vectors are anti-coincident or the angle (in radians) between them is equal to
the specified value. Can be defined for all entities with consistent normal vector - planar
faces, wires and edges.

Point
two points are coincident or separated by a specified distance. Can be defined for all enti-
ties, center of mass is used for lines, faces, solids and the vertex position for vertices.

Plane
combination of :Axis: and :Point: constraints.

For a more elaborate assembly example see Assemblies.

3.6 Sketch

3.6.1 Sketch tutorial

The purpose of this section is to demonstrate how to construct sketches using different approaches.

Face-based API

The main approach for constructing sketches is based on constructing faces and combining them using boolean opera-
tions.

import cadquery as cq

result = (
cq.Sketch()
.trapezoid(4, 3, 90)
.vertices()
.circle(0.5, mode="s")
.reset()
.vertices()
.fillet(0.25)
.reset()
.rarray(0.6, 1, 5, 1)
.slot(1.5, 0.4, mode="s", angle=90)

)

Note that selectors are implemented, but selection has to be explicitly reset. Sketch class does not implement history
and all modifications happen in-place.

40 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Modes

Every operation from the face API accepts a mode parameter to define how to combine the created object with existing
ones. It can be fused (mode='a'), cut (mode='s'), intersected (mode='i') or just stored for construction (mode='c').
In the last case, it is mandatory to specify a tag in order to be able to refer to the object later on. By default faces
are fused together. Note the usage of the subtractive and additive modes in the example above. The additional two are
demonstrated below.

result = (
cq.Sketch()
.rect(1, 2, mode="c", tag="base")
.vertices(tag="base")
.circle(0.7)
.reset()
.edges("|Y", tag="base")
.ellipse(1.2, 1, mode="i")
.reset()
.rect(2, 2, mode="i")
.clean()

)

Edge-based API

If needed, one can construct sketches by placing individual edges.

import cadquery as cq

result = (
cq.Sketch()
.segment((0.0, 0), (0.0, 2.0))
.segment((2.0, 0))
.close()
.arc((0.6, 0.6), 0.4, 0.0, 360.0)
.assemble(tag="face")
.edges("%LINE", tag="face")
.vertices()
.chamfer(0.2)

)

Once the construction is finished it has to be converted to the face-based representation using assemble(). Afterwards,
face based operations can be applied.

Convex hull

Warning: The Convex Hull feature is currently experimental.

For certain special use-cases convex hull can be constructed from straight segments and circles.

result = (
cq.Sketch()

(continues on next page)

3.6. Sketch 41

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.arc((0, 0), 1.0, 0.0, 360.0)

.arc((1, 1.5), 0.5, 0.0, 360.0)

.segment((0.0, 2), (-1, 3.0))

.hull()
)

Constraint-based sketches

Warning: The 2D Sketch constraints and solver is currently experimental.

Finally, if desired, geometric constraints can be used to construct sketches. So far only line segments and arcs can be
used in such a use case.

import cadquery as cq

result = (
cq.Sketch()
.segment((0, 0), (0, 3.0), "s1")
.arc((0.0, 3.0), (1.5, 1.5), (0.0, 0.0), "a1")
.constrain("s1", "Fixed", None)
.constrain("s1", "a1", "Coincident", None)
.constrain("a1", "s1", "Coincident", None)
.constrain("s1", "a1", "Angle", 45)
.solve()
.assemble()

)

Following constraints are implemented. Arguments are passed in as one tuple in constrain(). In this table, 0..1
refers to a float between 0 and 1 where 0 would create a constraint relative to the start of the element, and 1 the end.

Name Arity Entities Arguments Description
FixedPoint 1 All None for arc center or 0..1 for

point on segment/arc
Specified point is fixed

Coincident 2 All None Specified points coincide
Angle 2 All angle Angle between the tangents of

the two entities is fixed
Length 1 All length Specified entity has fixed length
Distance 2 All None or 0..1, None or 0..1, dis-

tance
Distance between two points is
fixed

Radius 1 Arc radius Specified entity has a fixed ra-
dius

Orientation 1 Segment x,y Specified entity is parallel to
(x,y)

ArcAngle 1 Arc angle Specified entity is fixed angular
span

42 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.6.2 Workplane integration

Once created, a sketch can be used to construct various features on a workplane. Supported operations include
extrude(), twistExtrude(), revolve(), sweep(), cutBlind(), cutThruAll() and loft().

Sketches can be created as separate entities and reused, but also created ad-hoc in one fluent chain of calls as shown
below.

Note that the sketch is placed on all locations that are on the top of the stack.

Constructing sketches in-place can be accomplished as follows.

import cadquery as cq

result = (
cq.Workplane()
.box(5, 5, 1)
.faces(">Z")
.sketch()
.regularPolygon(2, 3, tag="outer")
.regularPolygon(1.5, 3, mode="s")
.vertices(tag="outer")
.fillet(0.2)
.finalize()
.extrude(0.5)

)

Sketch API is available after the sketch() call and original workplane.

When multiple elements are selected before constructing the sketch, multiple sketches will be created.

import cadquery as cq

result = (
cq.Workplane()
.box(5, 5, 1)
.faces(">Z")
.workplane()
.rarray(2, 2, 2, 2)
.rect(1.5, 1.5)
.extrude(0.5)
.faces(">Z")
.sketch()
.circle(0.4)
.wires()
.distribute(6)
.circle(0.1, mode="a")
.clean()
.finalize()
.cutBlind(-0.5, taper=10)

)

Sometimes it is desired to reuse existing sketches and place them as-is on a workplane.

import cadquery as cq

(continues on next page)

3.6. Sketch 43

CadQuery Documentation, Release 2.4.0

(continued from previous page)

s = cq.Sketch().trapezoid(3, 1, 110).vertices().fillet(0.2)

result = (
cq.Workplane()
.box(5, 5, 5)
.faces(">X")
.workplane()
.transformed((0, 0, -90))
.placeSketch(s)
.cutThruAll()

)

Reusing of existing sketches is needed when using loft().

from cadquery import Workplane, Sketch, Vector, Location

s1 = Sketch().trapezoid(3, 1, 110).vertices().fillet(0.2)

s2 = Sketch().rect(2, 1).vertices().fillet(0.2)

result = Workplane().placeSketch(s1, s2.moved(Location(Vector(0, 0, 3)))).loft()

When lofting only outer wires are taken into account and inner wires are silently ignored. Note that only sketches on the
top of stack are considered for the current operation (i.e. there are no pending sketches), so when lofting or sweeping
all relevant sketches have to be added in one placeSketch call.

3.7 Assemblies

3.7.1 Assembly tutorial

The purpose of this section is to demonstrate how to use the assembly and constraints functionality to build a realistic
model. It will be a enclosure door assembly made out of 20x20 v-slot profiles.

Defining parameters

We want to start with defining the model parameters to allow for easy dimension changes later:

import cadquery as cq

Parameters
H = 400
W = 200
D = 350

PROFILE = cq.importers.importDXF("vslot-2020_1.dxf").wires()

SLOT_D = 5
PANEL_T = 3

HANDLE_D = 20
(continues on next page)

44 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

HANDLE_L = 50
HANDLE_W = 4

It is interesting to note that the v-slot profile is imported from a DXF file. This way it is very easy to change to other
aluminum extrusion type, e.g. Item or Bosch. Vendors usually provide DXF files.

Defining reusable components

Next we want to define functions generating the assembly components based on the specified parameters.

def make_vslot(l):
return PROFILE.toPending().extrude(l)

def make_connector():
rv = (

cq.Workplane()
.box(20, 20, 20)
.faces("<X")
.workplane()
.cboreHole(6, 15, 18)
.faces("<Z")
.workplane(centerOption="CenterOfMass")
.cboreHole(6, 15, 18)

)

tag mating faces
rv.faces(">X").tag("X").end()
rv.faces(">Z").tag("Z").end()

return rv

def make_panel(w, h, t, cutout):
rv = (

cq.Workplane("XZ")
.rect(w, h)
.extrude(t)
.faces(">Y")
.vertices()
.rect(2 * cutout, 2 * cutout)
.cutThruAll()
.faces("<Y")
.workplane()
.pushPoints([(-w / 3, HANDLE_L / 2), (-w / 3, -HANDLE_L / 2)])
.hole(3)

)

tag mating edges
rv.faces(">Y").edges("%CIRCLE").edges(">Z").tag("hole1")
rv.faces(">Y").edges("%CIRCLE").edges("<Z").tag("hole2")

(continues on next page)

3.7. Assemblies 45

CadQuery Documentation, Release 2.4.0

(continued from previous page)

return rv

def make_handle(w, h, r):
pts = ((0, 0), (w, 0), (w, h), (0, h))

path = cq.Workplane().polyline(pts)

rv = (
cq.Workplane("YZ")
.rect(r, r)
.sweep(path, transition="round")
.tag("solid")
.faces("<X")
.workplane()
.faces("<X", tag="solid")
.hole(r / 1.5)

)

tag mating faces
rv.faces("<X").faces(">Y").tag("mate1")
rv.faces("<X").faces("<Y").tag("mate2")

return rv

Initial assembly

Next we want to instantiate all the components and add them to the assembly.

define the elements
door = (

cq.Assembly()
.add(make_vslot(H), name="left")
.add(make_vslot(H), name="right")
.add(make_vslot(W), name="top")
.add(make_vslot(W), name="bottom")
.add(make_connector(), name="con_tl", color=cq.Color("black"))
.add(make_connector(), name="con_tr", color=cq.Color("black"))
.add(make_connector(), name="con_bl", color=cq.Color("black"))
.add(make_connector(), name="con_br", color=cq.Color("black"))
.add(

make_panel(W + SLOT_D, H + SLOT_D, PANEL_T, SLOT_D),
name="panel",
color=cq.Color(0, 0, 1, 0.2),

)
.add(

make_handle(HANDLE_D, HANDLE_L, HANDLE_W),
name="handle",
color=cq.Color("yellow"),

)
(continues on next page)

46 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

)

Constraints definition

Then we want to define all the constraints

define the constraints
(

door
left profile
.constrain("left@faces@<Z", "con_bl?Z", "Plane")
.constrain("left@faces@<X", "con_bl?X", "Axis")
.constrain("left@faces@>Z", "con_tl?Z", "Plane")
.constrain("left@faces@<X", "con_tl?X", "Axis")
top
.constrain("top@faces@<Z", "con_tl?X", "Plane")
.constrain("top@faces@<Y", "con_tl@faces@>Y", "Axis")
bottom
.constrain("bottom@faces@<Y", "con_bl@faces@>Y", "Axis")
.constrain("bottom@faces@>Z", "con_bl?X", "Plane")
right connectors
.constrain("top@faces@>Z", "con_tr@faces@>X", "Plane")
.constrain("bottom@faces@<Z", "con_br@faces@>X", "Plane")
.constrain("left@faces@>Z", "con_tr?Z", "Axis")
.constrain("left@faces@<Z", "con_br?Z", "Axis")
right profile
.constrain("right@faces@>Z", "con_tr@faces@>Z", "Plane")
.constrain("right@faces@<X", "left@faces@<X", "Axis")
panel
.constrain("left@faces@>X[-4]", "panel@faces@<X", "Plane")
.constrain("left@faces@>Z", "panel@faces@>Z", "Axis")
handle
.constrain("panel?hole1", "handle?mate1", "Plane")
.constrain("panel?hole2", "handle?mate2", "Point")

)

Should you need to do something unusual that is not possible with the string based selectors (e.g. use cadquery.
selectors.BoxSelector or a user-defined selector class), it is possible to pass cadquery.Shape objects to the
cadquery.Assembly.constrain() method directly. For example, the above

.constrain("part1@faces@>Z", "part3@faces@<Z", "Axis")

is equivalent to

.constrain("part1", part1.faces(">z").val(), "part3", part3.faces("<Z").val(), "Axis")

This method requires a cadquery.Shape object, so remember to use the cadquery.Workplane.val() method to
pass a single cadquery.Shape and not the whole cadquery.Workplane object.

3.7. Assemblies 47

CadQuery Documentation, Release 2.4.0

Final result

Below is the complete code including the final solve step.

import cadquery as cq

Parameters
H = 400
W = 200
D = 350

PROFILE = cq.importers.importDXF("vslot-2020_1.dxf").wires()

SLOT_D = 6
PANEL_T = 3

HANDLE_D = 20
HANDLE_L = 50
HANDLE_W = 4

def make_vslot(l):
return PROFILE.toPending().extrude(l)

def make_connector():
rv = (

cq.Workplane()
.box(20, 20, 20)
.faces("<X")
.workplane()
.cboreHole(6, 15, 18)
.faces("<Z")
.workplane(centerOption="CenterOfMass")
.cboreHole(6, 15, 18)

)

tag mating faces
rv.faces(">X").tag("X").end()
rv.faces(">Z").tag("Z").end()

return rv

def make_panel(w, h, t, cutout):
rv = (

cq.Workplane("XZ")
.rect(w, h)
.extrude(t)
.faces(">Y")
.vertices()
.rect(2 * cutout, 2 * cutout)
.cutThruAll()

(continues on next page)

48 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.faces("<Y")

.workplane()

.pushPoints([(-w / 3, HANDLE_L / 2), (-w / 3, -HANDLE_L / 2)])

.hole(3)
)

tag mating edges
rv.faces(">Y").edges("%CIRCLE").edges(">Z").tag("hole1")
rv.faces(">Y").edges("%CIRCLE").edges("<Z").tag("hole2")

return rv

def make_handle(w, h, r):
pts = ((0, 0), (w, 0), (w, h), (0, h))

path = cq.Workplane().polyline(pts)

rv = (
cq.Workplane("YZ")
.rect(r, r)
.sweep(path, transition="round")
.tag("solid")
.faces("<X")
.workplane()
.faces("<X", tag="solid")
.hole(r / 1.5)

)

tag mating faces
rv.faces("<X").faces(">Y").tag("mate1")
rv.faces("<X").faces("<Y").tag("mate2")

return rv

define the elements
door = (

cq.Assembly()
.add(make_vslot(H), name="left")
.add(make_vslot(H), name="right")
.add(make_vslot(W), name="top")
.add(make_vslot(W), name="bottom")
.add(make_connector(), name="con_tl", color=cq.Color("black"))
.add(make_connector(), name="con_tr", color=cq.Color("black"))
.add(make_connector(), name="con_bl", color=cq.Color("black"))
.add(make_connector(), name="con_br", color=cq.Color("black"))
.add(

make_panel(W + 2 * SLOT_D, H + 2 * SLOT_D, PANEL_T, SLOT_D),
name="panel",
color=cq.Color(0, 0, 1, 0.2),

)

(continues on next page)

3.7. Assemblies 49

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.add(
make_handle(HANDLE_D, HANDLE_L, HANDLE_W),
name="handle",
color=cq.Color("yellow"),

)
)

define the constraints
(

door
left profile
.constrain("left@faces@<Z", "con_bl?Z", "Plane")
.constrain("left@faces@<X", "con_bl?X", "Axis")
.constrain("left@faces@>Z", "con_tl?Z", "Plane")
.constrain("left@faces@<X", "con_tl?X", "Axis")
top
.constrain("top@faces@<Z", "con_tl?X", "Plane")
.constrain("top@faces@<Y", "con_tl@faces@>Y", "Axis")
bottom
.constrain("bottom@faces@<Y", "con_bl@faces@>Y", "Axis")
.constrain("bottom@faces@>Z", "con_bl?X", "Plane")
right connectors
.constrain("top@faces@>Z", "con_tr@faces@>X", "Plane")
.constrain("bottom@faces@<Z", "con_br@faces@>X", "Plane")
.constrain("left@faces@>Z", "con_tr?Z", "Axis")
.constrain("left@faces@<Z", "con_br?Z", "Axis")
right profile
.constrain("right@faces@>Z", "con_tr@faces@>Z", "Plane")
.constrain("right@faces@<X", "left@faces@<X", "Axis")
panel
.constrain("left@faces@>X[-4]", "panel@faces@<X", "Plane")
.constrain("left@faces@>Z", "panel@faces@>Z", "Axis")
handle
.constrain("panel?hole1", "handle?mate1", "Plane")
.constrain("panel?hole2", "handle?mate2", "Point")

)

solve
door.solve()

show_object(door, name="door")

50 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Data export

The resulting assembly can be exported as a STEP file or in a internal OCCT XML format.

STEP can be loaded in all CAD tool, e.g. in FreeCAD and the XML be used in other applications using OCCT.

1 door.save("door.step")
2 door.save("door.xml")

3.7.2 Object locations

Objects can be added to an assembly with initial locations supplied, such as:

import cadquery as cq

cone = cq.Solid.makeCone(1, 0, 2)

assy = cq.Assembly()
assy.add(

cone,
(continues on next page)

3.7. Assemblies 51

CadQuery Documentation, Release 2.4.0

(continued from previous page)

loc=cq.Location((0, 0, 0), (1, 0, 0), 180),
name="cone0",
color=cq.Color("green"),

)
assy.add(cone, name="cone1", color=cq.Color("blue"))

show_object(assy)

As an alternative to the user calculating locations, constraints and the method solve() can be used to position objects
in an assembly.

If initial locations and the method solve() are used the solver will overwrite these initial locations with it’s solution,
however initial locations can still affect the final solution. In an underconstrained system the solver may not move
an object if it does not contribute to the cost function, or if multiple solutions exist (ie. multiple instances where the
cost function is at a minimum) initial locations can cause the solver to converge on one particular solution. For very
complicated assemblies setting approximately correct initial locations can also reduce the computational time required.

3.7.3 Constraints

Constraints are often a better representation of the real world relationship the user wants to model than directly supplying
locations. In the above example the real world relationship is that the bottom face of each cone should touch, which
can be modelled with a Plane constraint. When the user provides explicit locations (instead of constraints) then they
are also responsible for updating them when, for example, the location of cone1 changes.

When at least one constraint is supplied and the method solve() is run, an optimization problem is set up. Each
constraint provides a cost function that depends on the position and orientation (represented by a Location) of the two
objects specified when creating the constraint. The solver varies the location of the assembly’s children and attempts to
minimize the sum of all cost functions. Hence by reading the formulae of the cost functions below, you can understand
exactly what each constraint does.

Point

The Point constraint is a frequently used constraint that minimizes the distance between two points. Some example
uses are centering faces or aligning verticies, but it is also useful with dummy vertices to create offsets between two
parts.

The cost function is:

(𝑝𝑎𝑟𝑎𝑚− |𝑐1 − 𝑐2|)2

Where:

• 𝑝𝑎𝑟𝑎𝑚 is the parameter of the constraint, which defaults to 0,

• 𝑐𝑖 is the center of the ith object, and

• |�⃗�| is the modulus of �⃗�, ie. the length of �⃗�.

When creating a Point constraint, the param argument can be used to specify a desired offset between the two centers.
This offset does not have a direction associated with it, if you want to specify an offset in a specific direction then you
should use a dummy Vertex.

The Point constraint uses the Center() to find the center of the argument. Hence it will work with all subclasses of
Shape.

52 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

import cadquery as cq

Use the Point constraint to position boxes relative to an arc
line = cq.Edge.makeCircle(radius=10, angle1=0, angle2=90)
box = cq.Workplane().box(1, 1, 1)

assy = cq.Assembly()
assy.add(line, name="line")

position the red box on the center of the arc
assy.add(box, name="box0", color=cq.Color("red"))
assy.constrain("line", "box0", "Point")

position the green box at a normalized distance of 0.8 along the arc
position0 = line.positionAt(0.8)
assy.add(box, name="box1", color=cq.Color("green"))
assy.constrain(

"line",
cq.Vertex.makeVertex(*position0.toTuple()),
"box1",
box.val(),
"Point",

)

position the orange box 2 units in any direction from the green box
assy.add(box, name="box2", color=cq.Color("orange"))
assy.constrain(

"line",
cq.Vertex.makeVertex(*position0.toTuple()),
"box2",
box.val(),
"Point",
param=2,

)

position the blue box offset 2 units in the x direction from the green box
position1 = position0 + cq.Vector(2, 0, 0)
assy.add(box, name="box3", color=cq.Color("blue"))
assy.constrain(

"line",
cq.Vertex.makeVertex(*position1.toTuple()),
"box3",
box.val(),
"Point",

)

assy.solve()
show_object(assy)

3.7. Assemblies 53

CadQuery Documentation, Release 2.4.0

Axis

The Axis constraint minimizes the angle between two vectors. It is frequently used to align faces and control the rotation
of an object.

The cost function is:

(𝑘𝑑𝑖𝑟 × (𝑝𝑎𝑟𝑎𝑚− 𝑑1∠𝑑2)
2

Where:

• 𝑘𝑑𝑖𝑟 is a scaling factor for directional constraints,

• 𝑝𝑎𝑟𝑎𝑚 is the parameter of the constraint, which defaults to 180 degrees,

• 𝑑𝑖 is the direction created from the ith object argument as described below, and

• 𝑑1∠𝑑2 is the angle between 𝑑1 and 𝑑2.

The argument param defaults to 180 degrees, which sets the two directions opposite to each other. This represents
what is often called a “mate” relationship, where the external faces of two objects touch.

import cadquery as cq

cone = cq.Solid.makeCone(1, 0, 2)

assy = cq.Assembly()
assy.add(cone, name="cone0", color=cq.Color("green"))
assy.add(cone, name="cone1", color=cq.Color("blue"))
assy.constrain("cone0@faces@<Z", "cone1@faces@<Z", "Axis")

assy.solve()
show_object(assy)

If the param argument is set to zero, then the two objects will point in the same direction. This is often used when one
object goes through another, such as a pin going into a hole in a plate:

import cadquery as cq

plate = cq.Workplane().box(10, 10, 1).faces(">Z").workplane().hole(2)
cone = cq.Solid.makeCone(0.8, 0, 4)

assy = cq.Assembly()
assy.add(plate, name="plate", color=cq.Color("green"))
assy.add(cone, name="cone", color=cq.Color("blue"))
place the center of the flat face of the cone in the center of the upper face of the␣
→˓plate
assy.constrain("plate@faces@>Z", "cone@faces@<Z", "Point")

set both the flat face of the cone and the upper face of the plate to point in the␣
→˓same direction
assy.constrain("plate@faces@>Z", "cone@faces@<Z", "Axis", param=0)

assy.solve()
show_object(assy)

In creating an Axis constraint, a direction vector is extracted in one of three different ways, depending on the object’s
type.

54 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Face:
Using normalAt()

Edge and geomType() is "CIRCLE":
Using normal()

Edge and geomType() is not "CIRCLE":
Using tangentAt()

Using any other type of object will raise a ValueError. By far the most common use case is to define an Axis constraint
from a Face.

import cadquery as cq
from math import cos, sin, pi

Create a sinusoidal surface:
surf = cq.Workplane().parametricSurface(

lambda u, v: (u, v, 5 * sin(pi * u / 10) * cos(pi * v / 10)),
N=40,
start=0,
stop=20,

)

Create a cone with a small, flat tip:
cone = (

cq.Workplane()
.add(cq.Solid.makeCone(1, 0.1, 2))
tag the tip for easy reference in the constraint:
.faces(">Z")
.tag("tip")
.end()

)

assy = cq.Assembly()
assy.add(surf, name="surf", color=cq.Color("lightgray"))
assy.add(cone, name="cone", color=cq.Color("green"))
set the Face on the tip of the cone to point in
the opposite direction of the center of the surface:
assy.constrain("surf", "cone?tip", "Axis")
to make the example clearer, move the cone to the center of the face:
assy.constrain("surf", "cone?tip", "Point")
assy.solve()

show_object(assy)

3.7. Assemblies 55

CadQuery Documentation, Release 2.4.0

Plane

The Plane constraint is simply a combination of both the Point and Axis constraints. It is a convenient shortcut for a
commonly used combination of constraints. It can be used to shorten the previous example from the two constraints to
just one:

assy = cq.Assembly()
assy.add(surf, name="surf", color=cq.Color("lightgray"))
assy.add(cone, name="cone", color=cq.Color("green"))
-# set the Face on the tip of the cone to point in
-# the opposite direction of the center of the surface:
-assy.constrain("surf", "cone?tip", "Axis")
-# to make the example clearer, move the cone to the center of the face:
-assy.constrain("surf", "cone?tip", "Point")
+assy.constrain("surf", "cone?tip", "Plane")
assy.solve()

show_object(assy)

The result of this code is identical to the above two constraint example.

For the cost function of Plane, please see the Point and Axis sections. The param argument is applied to Axis and
should be left as the default value for a “mate” style constraint (two surfaces touching) or can be set to 0 for a through
surface constraint (see description in the Axis constraint section).

PointInPlane

PointInPlane positions the center of the first object within the plane defined by the second object. The cost function is:

dist(�⃗�, 𝑝 offset)
2

Where:

• �⃗� is the center of the first argument,

• 𝑝 offset is a plane created from the second object, offset in the plane’s normal direction by param, and

• dist(⃗𝑎, 𝑏) is the distance between point �⃗� and plane 𝑏.

import cadquery as cq

Create an L-shaped object:
bracket = (

cq.Workplane("YZ")
.hLine(1)
.vLine(0.1)
.hLineTo(0.2)
.vLineTo(1)
.hLineTo(0)
.close()
.extrude(1)
tag some faces for easy reference:
.faces(">Y[1]")
.tag("inner_vert")
.end()

(continues on next page)

56 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.faces(">Z[1]")

.tag("inner_horiz")

.end()
)

box = cq.Workplane().box(0.5, 0.5, 0.5)

assy = cq.Assembly()
assy.add(bracket, name="bracket", color=cq.Color("gray"))
assy.add(box, name="box", color=cq.Color("green"))

lock bracket orientation:
assy.constrain("bracket@faces@>Z", "box@faces@>Z", "Axis", param=0)
assy.constrain("bracket@faces@>X", "box@faces@>X", "Axis", param=0)

constrain the bottom of the box to be on the plane defined by inner_horiz:
assy.constrain("box@faces@<Z", "bracket?inner_horiz", "PointInPlane")
constrain the side of the box to be 0.2 units from the plane defined by inner_vert
assy.constrain("box@faces@<Y", "bracket?inner_vert", "PointInPlane", param=0.2)
constrain the end of the box to be 0.1 units inside the end of the bracket
assy.constrain("box@faces@>X", "bracket@faces@>X", "PointInPlane", param=-0.1)

assy.solve()
show_object(assy)

PointOnLine

PointOnLine positions the center of the first object on the line defined by the second object. The cost function is:

(𝑝𝑎𝑟𝑎𝑚− dist(�⃗�, 𝑙))2

Where:

• �⃗� is the center of the first argument,

• 𝑙 is a line created from the second object

• 𝑝𝑎𝑟𝑎𝑚 is the parameter of the constraint, which defaults to 0,

• dist(⃗𝑎, 𝑏) is the distance between point �⃗� and line 𝑏.

import cadquery as cq

b1 = cq.Workplane().box(1, 1, 1)
b2 = cq.Workplane().sphere(0.15)

assy = (
cq.Assembly()
.add(b1, name="b1")
.add(b2, loc=cq.Location((0, 0, 4)), name="b2", color=cq.Color("red"))

)

fix the position of b1
(continues on next page)

3.7. Assemblies 57

CadQuery Documentation, Release 2.4.0

(continued from previous page)

assy.constrain("b1", "Fixed")
b2 on one of the edges of b1
assy.constrain("b2", "b1@edges@>>Z and >>Y", "PointOnLine")
b2 on another of the edges of b1
assy.constrain("b2", "b1@edges@>>Z and >>X", "PointOnLine")
effectively b2 will be constrained to be on the intersection of the two edges

assy.solve()
show_object(assy)

FixedPoint

FixedPoint fixes the position of the given argument to be equal to the given point specified via the parameter of the
constraint. This constraint locks all translational degrees of freedom of the argument. The cost function is:

‖�⃗�− ⃗𝑝𝑎𝑟𝑎𝑚‖2

Where:

• �⃗� is the center of the argument,

• 𝑝𝑎𝑟𝑎𝑚 is the parameter of the constraint - tuple specifying the target position.

import cadquery as cq

b1 = cq.Workplane().box(1, 1, 1)
b2 = cq.Workplane().sphere(0.15)

assy = (
cq.Assembly()
.add(b1, name="b1")
.add(b2, loc=cq.Location((0, 0, 4)), name="b2", color=cq.Color("red"))
.add(b1, loc=cq.Location((-2, 0, 0)), name="b3", color=cq.Color("red"))

)

pnt = (0.5, 0.5, 0.5)

fix the position of b1
assy.constrain("b1", "Fixed")
fix b2 center at point
assy.constrain("b2", "FixedPoint", pnt)
fix b3 vertex position at point
assy.constrain("b3@vertices@<X and <Y and <Z", "FixedPoint", pnt)

assy.solve()
show_object(assy)

58 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

FixedRotation

FixedRotation fixes the rotation of the given argument to be equal to the value specified via the parameter of the
constraint.

This constraint locks all rotational degrees of freedom of the argument. The cost function is:⃦⃦⃦
�⃗�− ⃗𝑝𝑎𝑟𝑎𝑚

⃦⃦⃦2
Where:

• �⃗� vector of the rotation angles of the rotation applied to the argument,

• 𝑝𝑎𝑟𝑎𝑚 is the parameter of the constraint - tuple specifying the target rotation.

import cadquery as cq

b1 = cq.Workplane().box(1, 1, 1)
b2 = cq.Workplane().rect(0.1, 0.1).extrude(1, taper=-15)

assy = (
cq.Assembly()
.add(b1, name="b1")
.add(b2, loc=cq.Location((0, 0, 4)), name="b2", color=cq.Color("red"))

)

fix the position of b1
assy.constrain("b1", "Fixed")
fix b2 bottom face position (but not rotation)
assy.constrain("b2@faces@<Z", "FixedPoint", (0, 0, 0.5))
fix b2 rotational degrees of freedom too
assy.constrain("b2", "FixedRotation", (45, 0, 45))

assy.solve()
show_object(assy)

FixedAxis

FixedAxis fixes the orientation of the given argument’s normal or tangent to be equal to the orientation of the vector
specified via the parameter of the constraint. This constraint locks two rotational degrees of freedom of the argument.
The cost function is:

(⃗𝑎∠ ⃗𝑝𝑎𝑟𝑎𝑚)2

Where:

• �⃗� normal or tangent vector of the argument,

• 𝑝𝑎𝑟𝑎𝑚 is the parameter of the constraint - tuple specifying the target direction.

import cadquery as cq

b1 = cq.Workplane().box(1, 1, 1)
b2 = cq.Workplane().rect(0.1, 0.1).extrude(1, taper=-15)

(continues on next page)

3.7. Assemblies 59

CadQuery Documentation, Release 2.4.0

(continued from previous page)

assy = (
cq.Assembly()
.add(b1, name="b1")
.add(b2, loc=cq.Location((0, 0, 4)), name="b2", color=cq.Color("red"))

)

fix the position of b1
assy.constrain("b1", "Fixed")
fix b2 bottom face position (but not rotation)
assy.constrain("b2@faces@<Z", "FixedPoint", (0, 0, 0.5))
fix b2 some rotational degrees of freedom too
assy.constrain("b2@faces@>Z", "FixedAxis", (1, 0, 2))

assy.solve()
show_object(assy)

3.7.4 Assembly colors

Aside from RGBA values, the Color class can be instantiated from a text name. Valid names are listed along with a
color sample below:

3.8 CadQuery Scripts and Object Output

CadQuery scripts are pure Python scripts, that may follow a few conventions.

If you are using CadQuery as a library, there are no constraints.

If you are using CadQuery scripts inside of a CadQuery execution environment like CQ-editor, there are a few conven-
tions you need to be aware of:

• cadquery is usually imported as ‘cq’ at the top of a script

• to return an object to the execution environment (like CQ-editor) for rendering, you need to call the show_object()
method

Each script generally has three sections:

• Variable Assignments and metadata definitions

• CadQuery and other Python code

• object export or rendering, via the show_object() function

see the The CadQuery Gateway Interface section for more details.

60 Chapter 3. Table Of Contents

https://github.com/CadQuery/CQ-editor

CadQuery Documentation, Release 2.4.0

3.9 Examples

The examples on this page can help you learn how to build objects with CadQuery.

They are organized from simple to complex, so working through them in order is the best way to absorb them.

Each example lists the API elements used in the example for easy reference. Items introduced in the example are marked
with a !

Note: We strongly recommend installing CQ-editor, so that you can work along with these examples interactively.
See Installing CadQuery for more info.

If you do, make sure to take these steps so that they work:

1. import cadquery as cq

2. add the line show_object(result) at the end. The samples below are autogenerated, but they use a different
syntax than the models on the website need to be.

List of Examples

• Examples

– Simple Rectangular Plate

– Plate with Hole

– An extruded prismatic solid

– Building Profiles using lines and arcs

– Moving The Current working point

– Using Point Lists

– Polygons

– Polylines

– Defining an Edge with a Spline

– Mirroring Symmetric Geometry

– Mirroring 3D Objects

– Mirroring From Faces

– Creating Workplanes on Faces

– Locating a Workplane on a vertex

– Offset Workplanes

– Copying Workplanes

– Rotated Workplanes

– Using construction Geometry

– Shelling To Create Thin features

– Making Lofts

3.9. Examples 61

https://github.com/CadQuery/CQ-editor

CadQuery Documentation, Release 2.4.0

– Extruding until a given face

– Making Counter-bored and Counter-sunk Holes

– Offsetting wires in 2D

– Rounding Corners with Fillet

– Tagging objects

– A Parametric Bearing Pillow Block

– Splitting an Object

– The Classic OCC Bottle

– A Parametric Enclosure

– Lego Brick

– Braille Example

– Panel With Various Connector Holes

– Cycloidal gear

3.9.1 Simple Rectangular Plate

Just about the simplest possible example, a rectangular box

result = cadquery.Workplane("front").box(2.0, 2.0, 0.5)

Api References

• Workplane() ! • Workplane.box() !

3.9.2 Plate with Hole

A rectangular box, but with a hole added.

“>Z” selects the top most face of the resulting box. The hole is located in the center because the default origin of a
working plane is the projected origin of the last Workplane, the last Workplane having origin at (0,0,0) the projection
is at the center of the face. The default hole depth is through the entire part.

The dimensions of the box. These can be modified rather than changing the
object's code directly.
length = 80.0
height = 60.0
thickness = 10.0
center_hole_dia = 22.0

Create a box based on the dimensions above and add a 22mm center hole
result = (

cq.Workplane("XY")
.box(length, height, thickness)

(continues on next page)

62 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.faces(">Z")

.workplane()

.hole(center_hole_dia)
)

Api References

• Workplane.hole() !
• Workplane.box()

• Workplane.box()

3.9.3 An extruded prismatic solid

Build a prismatic solid using extrusion. After a drawing operation, the center of the previous object is placed on the
stack, and is the reference for the next operation. So in this case, the rect() is drawn centered on the previously draw
circle.

By default, rectangles and circles are centered around the previous working point.

result = cq.Workplane("front").circle(2.0).rect(0.5, 0.75).extrude(0.5)

Api References

• Workplane.circle() !
• Workplane.rect() !

• Workplane.extrude() !
• Workplane()

3.9.4 Building Profiles using lines and arcs

Sometimes you need to build complex profiles using lines and arcs. This example builds a prismatic solid from 2D
operations.

2D operations maintain a current point, which is initially at the origin. Use close() to finish a closed curve.

result = (
cq.Workplane("front")
.lineTo(2.0, 0)
.lineTo(2.0, 1.0)
.threePointArc((1.0, 1.5), (0.0, 1.0))
.close()
.extrude(0.25)

)

Api References

• Workplane.threePointArc() !
• Workplane.lineTo() !

• Workplane.extrude()
• Workplane()

3.9. Examples 63

CadQuery Documentation, Release 2.4.0

3.9.5 Moving The Current working point

In this example, a closed profile is required, with some interior features as well.

This example also demonstrates using multiple lines of code instead of longer chained commands, though of course in
this case it was possible to do it in one long line as well.

A new work plane center can be established at any point.

result = cq.Workplane("front").circle(
3.0

) # current point is the center of the circle, at (0, 0)
result = result.center(1.5, 0.0).rect(0.5, 0.5) # new work center is (1.5, 0.0)

result = result.center(-1.5, 1.5).circle(0.25) # new work center is (0.0, 1.5).
The new center is specified relative to the previous center, not global coordinates!

result = result.extrude(0.25)

Api References

• Workplane.center() !
• Workplane()
• Workplane.circle()

• Workplane.rect()
• Workplane.extrude()

3.9.6 Using Point Lists

Sometimes you need to create a number of features at various locations, and using Workplane.center() is too
cumbersome.

You can use a list of points to construct multiple objects at once. Most construction methods, like Workplane.
circle() and Workplane.rect(), will operate on multiple points if they are on the stack

r = cq.Workplane("front").circle(2.0) # make base
r = r.pushPoints(

[(1.5, 0), (0, 1.5), (-1.5, 0), (0, -1.5)]
) # now four points are on the stack
r = r.circle(0.25) # circle will operate on all four points
result = r.extrude(0.125) # make prism

Api References

• Workplane.pushPoints() !
• Workplane()

• Workplane.circle()
• Workplane.extrude()

64 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.9.7 Polygons

You can create polygons for each stack point if you would like. Useful in 3d printers whose firmware does not correct
for small hole sizes.

result = (
cq.Workplane("front")
.box(3.0, 4.0, 0.25)
.pushPoints([(0, 0.75), (0, -0.75)])
.polygon(6, 1.0)
.cutThruAll()

)

Api References

• Workplane.polygon() !
• Workplane.pushPoints()

• Workplane.box()

3.9.8 Polylines

Workplane.polyline() allows creating a shape from a large number of chained points connected by lines.

This example uses a polyline to create one half of an i-beam shape, which is mirrored to create the final profile.

(L, H, W, t) = (100.0, 20.0, 20.0, 1.0)
pts = [

(0, H / 2.0),
(W / 2.0, H / 2.0),
(W / 2.0, (H / 2.0 - t)),
(t / 2.0, (H / 2.0 - t)),
(t / 2.0, (t - H / 2.0)),
(W / 2.0, (t - H / 2.0)),
(W / 2.0, H / -2.0),
(0, H / -2.0),

]
result = cq.Workplane("front").polyline(pts).mirrorY().extrude(L)

Api References

• Workplane.polyline() !
• Workplane()

• Workplane.mirrorY()
• Workplane.extrude()

3.9. Examples 65

CadQuery Documentation, Release 2.4.0

3.9.9 Defining an Edge with a Spline

This example defines a side using a spline curve through a collection of points. Useful when you have an edge that
needs a complex profile

s = cq.Workplane("XY")
sPnts = [

(2.75, 1.5),
(2.5, 1.75),
(2.0, 1.5),
(1.5, 1.0),
(1.0, 1.25),
(0.5, 1.0),
(0, 1.0),

]
r = s.lineTo(3.0, 0).lineTo(3.0, 1.0).spline(sPnts, includeCurrent=True).close()
result = r.extrude(0.5)

Api References

• Workplane.spline() !
• Workplane()
• Workplane.close()

• Workplane.lineTo()
• Workplane.extrude()

3.9.10 Mirroring Symmetric Geometry

You can mirror 2D geometry when your shape is symmetric. In this example we also introduce horizontal and vertical
lines, which make for slightly easier coding.

r = cq.Workplane("front").hLine(1.0) # 1.0 is the distance, not coordinate
r = (

r.vLine(0.5).hLine(-0.25).vLine(-0.25).hLineTo(0.0)
) # hLineTo allows using xCoordinate not distance
result = r.mirrorY().extrude(0.25) # mirror the geometry and extrude

Api References

• Workplane.hLine() !
• Workplane.vLine() !
• Workplane.hLineTo() !
• Workplane.mirrorY() !

• Workplane.mirrorX() !
• Workplane()
• Workplane.extrude()

66 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.9.11 Mirroring 3D Objects

result0 = (
cadquery.Workplane("XY")
.moveTo(10, 0)
.lineTo(5, 0)
.threePointArc((3.9393, 0.4393), (3.5, 1.5))
.threePointArc((3.0607, 2.5607), (2, 3))
.lineTo(1.5, 3)
.threePointArc((0.4393, 3.4393), (0, 4.5))
.lineTo(0, 13.5)
.threePointArc((0.4393, 14.5607), (1.5, 15))
.lineTo(28, 15)
.lineTo(28, 13.5)
.lineTo(24, 13.5)
.lineTo(24, 11.5)
.lineTo(27, 11.5)
.lineTo(27, 10)
.lineTo(22, 10)
.lineTo(22, 13.2)
.lineTo(14.5, 13.2)
.lineTo(14.5, 10)
.lineTo(12.5, 10)
.lineTo(12.5, 13.2)
.lineTo(5.5, 13.2)
.lineTo(5.5, 2)
.threePointArc((5.793, 1.293), (6.5, 1))
.lineTo(10, 1)
.close()

)
result = result0.extrude(100)

result = result.rotate((0, 0, 0), (1, 0, 0), 90)

result = result.translate(result.val().BoundingBox().center.multiply(-1))

mirXY_neg = result.mirror(mirrorPlane="XY", basePointVector=(0, 0, -30))
mirXY_pos = result.mirror(mirrorPlane="XY", basePointVector=(0, 0, 30))
mirZY_neg = result.mirror(mirrorPlane="ZY", basePointVector=(-30, 0, 0))
mirZY_pos = result.mirror(mirrorPlane="ZY", basePointVector=(30, 0, 0))

result = result.union(mirXY_neg).union(mirXY_pos).union(mirZY_neg).union(mirZY_pos)

Api References

• Workplane.moveTo()
• Workplane.lineTo()
• Workplane.threePointArc()
• Workplane.extrude()

• Workplane.mirror()
• Workplane.union()
• Workplane.rotate()

3.9. Examples 67

CadQuery Documentation, Release 2.4.0

3.9.12 Mirroring From Faces

This example shows how you can mirror about a selected face. It also shows how the resulting mirrored object can be
unioned immediately with the referenced mirror geometry.

result = cq.Workplane("XY").line(0, 1).line(1, 0).line(0, -0.5).close().extrude(1)

result = result.mirror(result.faces(">X"), union=True)

Api References

• Workplane.line()
• Workplane.close()
• Workplane.extrude()

• Workplane.faces()
• Workplane.mirror()
• Workplane.union()

3.9.13 Creating Workplanes on Faces

This example shows how to locate a new workplane on the face of a previously created feature.

Note: Using workplanes in this way are a key feature of CadQuery. Unlike a typical 3d scripting language, using work
planes frees you from tracking the position of various features in variables, and allows the model to adjust itself with
removing redundant dimensions

The Workplane.faces() method allows you to select the faces of a resulting solid. It accepts a selector string or
object, that allows you to target a single face, and make a workplane oriented on that face.

Keep in mind that by default the origin of a new workplane is calculated by forming a plane from the selected face and
projecting the previous origin onto that plane. This behaviour can be changed through the centerOption argument of
Workplane.workplane().

result = cq.Workplane("front").box(2, 3, 0.5) # make a basic prism
result = (

result.faces(">Z").workplane().hole(0.5)
) # find the top-most face and make a hole

Api References

• Workplane.faces() !
• StringSyntaxSelector() !
• Selectors Reference !

• Workplane.workplane()
• Workplane.box()
• Workplane()

68 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.9.14 Locating a Workplane on a vertex

Normally, the Workplane.workplane()method requires a face to be selected. But if a vertex is selected immediately
after a face, Workplane.workplane()with the centerOption argument set to CenterOfMass will locate the workplane
on the face, with the origin at the vertex instead of at the center of the face

The example also introduces Workplane.cutThruAll(), which makes a cut through the entire part, no matter how
deep the part is.

result = cq.Workplane("front").box(3, 2, 0.5) # make a basic prism
result = (

result.faces(">Z").vertices("<XY").workplane(centerOption="CenterOfMass")
) # select the lower left vertex and make a workplane
result = result.circle(1.0).cutThruAll() # cut the corner out

Api References

• Workplane.cutThruAll() !
• Selectors Reference !
• Workplane.vertices() !

• Workplane.box()
• Workplane()
• StringSyntaxSelector() !

3.9.15 Offset Workplanes

Workplanes do not have to lie exactly on a face. When you make a workplane, you can define it at an offset from an
existing face.

This example uses an offset workplane to make a compound object, which is perfectly valid!

result = cq.Workplane("front").box(3, 2, 0.5) # make a basic prism
result = result.faces("<X").workplane(

offset=0.75
) # workplane is offset from the object surface
result = result.circle(1.0).extrude(0.5) # disc

Api References

• Workplane.extrude()
• Selectors Reference !

• Workplane.box()
• Workplane()

3.9.16 Copying Workplanes

An existing CQ object can copy a workplane from another CQ object.

result = (
cq.Workplane("front")
.circle(1)
.extrude(10) # make a cylinder
We want to make a second cylinder perpendicular to the first,

(continues on next page)

3.9. Examples 69

CadQuery Documentation, Release 2.4.0

(continued from previous page)

but we have no face to base the workplane off
.copyWorkplane(

create a temporary object with the required workplane
cq.Workplane("right", origin=(-5, 0, 0))

)
.circle(1)
.extrude(10)

)

API References

• Workplane.copyWorkplane() !
• Workplane.circle()

• Workplane.extrude()
• Workplane()

3.9.17 Rotated Workplanes

You can create a rotated work plane by specifying angles of rotation relative to another workplane

result = (
cq.Workplane("front")
.box(4.0, 4.0, 0.25)
.faces(">Z")
.workplane()
.transformed(offset=cq.Vector(0, -1.5, 1.0), rotate=cq.Vector(60, 0, 0))
.rect(1.5, 1.5, forConstruction=True)
.vertices()
.hole(0.25)

)

Api References

• Workplane.transformed() !
• Workplane.box()

• Workplane.rect()
• Workplane.faces()

3.9.18 Using construction Geometry

You can draw shapes to use the vertices as points to locate other features. Features that are used to locate other features,
rather than to create them, are called Construction Geometry

In the example below, a rectangle is drawn, and its vertices are used to locate a set of holes.

result = (
cq.Workplane("front")
.box(2, 2, 0.5)
.faces(">Z")
.workplane()

(continues on next page)

70 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.rect(1.5, 1.5, forConstruction=True)

.vertices()

.hole(0.125)
)

Api References

• Workplane.rect() (forConstruction=True)
• Selectors Reference
• Workplane.workplane()

• Workplane.box()
• Workplane.hole()
• Workplane()

3.9.19 Shelling To Create Thin features

Shelling converts a solid object into a shell of uniform thickness.

To shell an object and ‘hollow out’ the inside pass a negative thickness parameter to the Workplane.shell()method
of a shape.

result = cq.Workplane("front").box(2, 2, 2).shell(-0.1)

A positive thickness parameter wraps an object with filleted outside edges and the original object will be the ‘hollowed
out’ portion.

result = cq.Workplane("front").box(2, 2, 2).shell(0.1)

Use face selectors to select a face to be removed from the resulting hollow shape.

result = cq.Workplane("front").box(2, 2, 2).faces("+Z").shell(0.1)

Multiple faces can be removed using more complex selectors.

result = cq.Workplane("front").box(2, 2, 2).faces("+Z or -X or +X").shell(0.1)

Api References

• Workplane.shell() !
• Selectors Reference
• Workplane.box()

• Workplane.faces()
• Workplane()

3.9. Examples 71

CadQuery Documentation, Release 2.4.0

3.9.20 Making Lofts

A loft is a solid swept through a set of wires. This example creates lofted section between a rectangle and a circular
section.

result = (
cq.Workplane("front")
.box(4.0, 4.0, 0.25)
.faces(">Z")
.circle(1.5)
.workplane(offset=3.0)
.rect(0.75, 0.5)
.loft(combine=True)

)

Api References

• Workplane.loft() !
• Workplane.box()
• Workplane.faces()

• Workplane.circle()
• Workplane.rect()

3.9.21 Extruding until a given face

Sometimes you will want to extrude a wire until a given face that can be not planar or where you might not know
easily the distance you have to extrude to. In such cases you can use next, last or even give a Face object for the until
argument of extrude().

result = (
cq.Workplane(origin=(20, 0, 0))
.circle(2)
.revolve(180, (-20, 0, 0), (-20, -1, 0))
.center(-20, 0)
.workplane()
.rect(20, 4)
.extrude("next")

)

The same behaviour is available with cutBlind() and as you can see it is also possible to work on several Wire objects
at a time (the same is true for extrude()).

skyscrapers_locations = [(-16, 1), (-8, 0), (7, 0.2), (17, -1.2)]
angles = iter([15, 0, -8, 10])
skyscrapers = (

cq.Workplane()
.pushPoints(skyscrapers_locations)
.eachpoint(

lambda loc: (
cq.Workplane()
.rect(5, 16)
.workplane(offset=10)
.ellipse(3, 8)

(continues on next page)

72 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.workplane(offset=10)

.slot2D(20, 5, 90)

.loft()

.rotateAboutCenter((0, 0, 1), next(angles))

.val()

.located(loc)
)

)
)

result = (
skyscrapers.transformed((0, -90, 0))
.moveTo(15, 0)
.rect(3, 3, forConstruction=True)
.vertices()
.circle(1)
.cutBlind("last")

)

Here is a typical situation where extruding and cuting until a given surface is very handy. It allows us to extrude or cut
until a curved surface without overlapping issues.

import cadquery as cq

sphere = cq.Workplane().sphere(5)
base = cq.Workplane(origin=(0, 0, -2)).box(12, 12, 10).cut(sphere).edges("|Z").fillet(2)
sphere_face = base.faces(">>X[2] and (not |Z) and (not |Y)").val()
base = base.faces("<Z").workplane().circle(2).extrude(10)

shaft = cq.Workplane().sphere(4.5).circle(1.5).extrude(20)

spherical_joint = (
base.union(shaft)
.faces(">X")
.workplane(centerOption="CenterOfMass")
.move(0, 4)
.slot2D(10, 2, 90)
.cutBlind(sphere_face)
.workplane(offset=10)
.move(0, 2)
.circle(0.9)
.extrude("next")

)

result = spherical_joint

Warning: If the wire you want to extrude cannot be fully projected on the target surface, the result will be
unpredictable. Furthermore, the algorithm in charge of finding the candidate faces does its search by counting all
the faces intersected by a line created from your wire center along your extrusion direction. So make sure your wire
can be projected on your target face to avoid unexpected behaviour.

3.9. Examples 73

CadQuery Documentation, Release 2.4.0

Api References

• Workplane.cutBlind() !
• Workplane.rect()
• Workplane.ellipse()
• Workplane.workplane()

• Workplane.slot2D()
• Workplane.loft()
• Workplane.
rotateAboutCenter()

• Workplane.transformed()
• Workplane.moveTo()
• Workplane.circle()

3.9.22 Making Counter-bored and Counter-sunk Holes

Counterbored and countersunk holes are so common that CadQuery creates macros to create them in a single step.

Similar to Workplane.hole(), these functions operate on a list of points as well as a single point.

result = (
cq.Workplane(cq.Plane.XY())
.box(4, 2, 0.5)
.faces(">Z")
.workplane()
.rect(3.5, 1.5, forConstruction=True)
.vertices()
.cboreHole(0.125, 0.25, 0.125, depth=None)

)

Api References

• Workplane.cboreHole() !
• Workplane.cskHole() !
• Workplane.box()
• Workplane.rect()

• Workplane.workplane()
• Workplane.vertices()
• Workplane.faces()
• Workplane()

3.9.23 Offsetting wires in 2D

Two dimensional wires can be transformed with Workplane.offset2D(). They can be offset inwards or outwards,
and with different techniques for extending the corners.

original = cq.Workplane().polygon(5, 10).extrude(0.1).translate((0, 0, 2))
arc = cq.Workplane().polygon(5, 10).offset2D(1, "arc").extrude(0.1).translate((0, 0, 1))
intersection = cq.Workplane().polygon(5, 10).offset2D(1, "intersection").extrude(0.1)
result = original.add(arc).add(intersection)

Using the forConstruction argument you can do the common task of offsetting a series of bolt holes from the outline
of an object. Here is the counterbore example from above but with the bolt holes offset from the edges.

result = (
cq.Workplane()
.box(4, 2, 0.5)
.faces(">Z")
.edges()

(continues on next page)

74 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.toPending()

.offset2D(-0.25, forConstruction=True)

.vertices()

.cboreHole(0.125, 0.25, 0.125, depth=None)
)

Note that Workplane.edges() is for selecting objects. It does not add the selected edges to pending edges in the
modelling context, because this would result in your next extrusion including everything you had only selected in
addition to the lines you had drawn. To specify you want these edges to be used in Workplane.offset2D(), you call
Workplane.toPending() to explicitly put them in the list of pending edges.

Api References

• Workplane.offset2D() !
• Workplane.cboreHole()
• Workplane.cskHole()
• Workplane.box()
• Workplane.polygon()

• Workplane.workplane()
• Workplane.vertices()
• Workplane.edges()
• Workplane.faces()
• Workplane()

3.9.24 Rounding Corners with Fillet

Filleting is done by selecting the edges of a solid, and using the fillet function.

Here we fillet all of the edges of a simple plate.

result = cq.Workplane("XY").box(3, 3, 0.5).edges("|Z").fillet(0.125)

Api References

• Workplane.fillet() !
• Workplane.box()

• Workplane.edges()
• Workplane()

3.9.25 Tagging objects

The Workplane.tag()method can be used to tag a particular object in the chain with a string, so that it can be referred
to later in the chain.

The Workplane.workplaneFromTagged() method applies Workplane.copyWorkplane() to a tagged object. For
example, when extruding two different solids from a surface, after the first solid is extruded it can become difficult to
reselect the original surface with CadQuery’s other selectors.

result = (
cq.Workplane("XY")
create and tag the base workplane
.box(10, 10, 10)
.faces(">Z")
.workplane()

(continues on next page)

3.9. Examples 75

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.tag("baseplane")
extrude a cylinder
.center(-3, 0)
.circle(1)
.extrude(3)
to reselect the base workplane, simply
.workplaneFromTagged("baseplane")
extrude a second cylinder
.center(3, 0)
.circle(1)
.extrude(2)

)

Tags can also be used with most selectors, including Workplane.vertices(), Workplane.faces(), Workplane.
edges(), Workplane.wires(), Workplane.shells(), Workplane.solids() and Workplane.compounds().

result = (
cq.Workplane("XY")
create a triangular prism and tag it
.polygon(3, 5)
.extrude(4)
.tag("prism")
create a sphere that obscures the prism
.sphere(10)
create features based on the prism's faces
.faces("<X", tag="prism")
.workplane()
.circle(1)
.cutThruAll()
.faces(">X", tag="prism")
.faces(">Y")
.workplane()
.circle(1)
.cutThruAll()

)

Api References

• Workplane.tag() !
• Workplane.getTagged() !
• Workplane.workplaneFromTagged() !
• Workplane.extrude()

• Workplane.cutThruAll()
• Workplane.circle()
• Workplane.faces()
• Workplane()

76 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.9.26 A Parametric Bearing Pillow Block

Combining a few basic functions, its possible to make a very good parametric bearing pillow block, with just a few
lines of code.

(length, height, bearing_diam, thickness, padding) = (30.0, 40.0, 22.0, 10.0, 8.0)

result = (
cq.Workplane("XY")
.box(length, height, thickness)
.faces(">Z")
.workplane()
.hole(bearing_diam)
.faces(">Z")
.workplane()
.rect(length - padding, height - padding, forConstruction=True)
.vertices()
.cboreHole(2.4, 4.4, 2.1)

)

3.9.27 Splitting an Object

You can split an object using a workplane, and retain either or both halves

c = cq.Workplane("XY").box(1, 1, 1).faces(">Z").workplane().circle(0.25).cutThruAll()

now cut it in half sideways
result = c.faces(">Y").workplane(-0.5).split(keepTop=True)

Api References

• Workplane.split() !
• Workplane.box()
• Workplane.circle()

• Workplane.cutThruAll()
• Workplane.workplane()
• Workplane()

3.9.28 The Classic OCC Bottle

CadQuery is based on the OpenCascade.org (OCC) modeling Kernel. Those who are familiar with OCC know about
the famous ‘bottle’ example. The bottle example in the OCCT online documentation.

A pythonOCC version is listed here.

Of course one difference between this sample and the OCC version is the length. This sample is one of the longer ones
at 13 lines, but that’s very short compared to the pythonOCC version, which is 10x longer!

(L, w, t) = (20.0, 6.0, 3.0)
s = cq.Workplane("XY")

Draw half the profile of the bottle and extrude it
p = (

(continues on next page)

3.9. Examples 77

https://old.opencascade.com/doc/occt-7.5.0/overview/html/occt__tutorial.html
https://github.com/tpaviot/pythonocc-demos/blob/f3ea9b4f65a9dff482be04b153d4ce5ec2430e13/examples/core_classic_occ_bottle.py

CadQuery Documentation, Release 2.4.0

(continued from previous page)

s.center(-L / 2.0, 0)
.vLine(w / 2.0)
.threePointArc((L / 2.0, w / 2.0 + t), (L, w / 2.0))
.vLine(-w / 2.0)
.mirrorX()
.extrude(30.0, True)

)

Make the neck
p = p.faces(">Z").workplane(centerOption="CenterOfMass").circle(3.0).extrude(2.0, True)

Make a shell
result = p.faces(">Z").shell(0.3)

Api References

• Workplane.extrude()
• Workplane.mirrorX()
• Workplane.threePointArc()
• Workplane.workplane()

• Workplane.vertices()
• Workplane.vLine()
• Workplane.faces()
• Workplane()

3.9.29 A Parametric Enclosure

parameter definitions
p_outerWidth = 100.0 # Outer width of box enclosure
p_outerLength = 150.0 # Outer length of box enclosure
p_outerHeight = 50.0 # Outer height of box enclosure

p_thickness = 3.0 # Thickness of the box walls
p_sideRadius = 10.0 # Radius for the curves around the sides of the box
p_topAndBottomRadius = (

2.0 # Radius for the curves on the top and bottom edges of the box
)

p_screwpostInset = 12.0 # How far in from the edges the screw posts should be place.
p_screwpostID = 4.0 # Inner Diameter of the screw post holes, should be roughly screw␣
→˓diameter not including threads
p_screwpostOD = 10.0 # Outer Diameter of the screw posts.\nDetermines overall thickness␣
→˓of the posts

p_boreDiameter = 8.0 # Diameter of the counterbore hole, if any
p_boreDepth = 1.0 # Depth of the counterbore hole, if
p_countersinkDiameter = 0.0 # Outer diameter of countersink. Should roughly match the␣
→˓outer diameter of the screw head
p_countersinkAngle = 90.0 # Countersink angle (complete angle between opposite sides,␣
→˓not from center to one side)
p_flipLid = True # Whether to place the lid with the top facing down or not.
p_lipHeight = 1.0 # Height of lip on the underside of the lid.\nSits inside the box␣
→˓body for a snug fit.

(continues on next page)

78 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

outer shell
oshell = (

cq.Workplane("XY")
.rect(p_outerWidth, p_outerLength)
.extrude(p_outerHeight + p_lipHeight)

)

weird geometry happens if we make the fillets in the wrong order
if p_sideRadius > p_topAndBottomRadius:

oshell = oshell.edges("|Z").fillet(p_sideRadius)
oshell = oshell.edges("#Z").fillet(p_topAndBottomRadius)

else:
oshell = oshell.edges("#Z").fillet(p_topAndBottomRadius)
oshell = oshell.edges("|Z").fillet(p_sideRadius)

inner shell
ishell = (

oshell.faces("<Z")
.workplane(p_thickness, True)
.rect((p_outerWidth - 2.0 * p_thickness), (p_outerLength - 2.0 * p_thickness))
.extrude(

(p_outerHeight - 2.0 * p_thickness), False
) # set combine false to produce just the new boss

)
ishell = ishell.edges("|Z").fillet(p_sideRadius - p_thickness)

make the box outer box
box = oshell.cut(ishell)

make the screw posts
POSTWIDTH = p_outerWidth - 2.0 * p_screwpostInset
POSTLENGTH = p_outerLength - 2.0 * p_screwpostInset

box = (
box.faces(">Z")
.workplane(-p_thickness)
.rect(POSTWIDTH, POSTLENGTH, forConstruction=True)
.vertices()
.circle(p_screwpostOD / 2.0)
.circle(p_screwpostID / 2.0)
.extrude(-1.0 * (p_outerHeight + p_lipHeight - p_thickness), True)

)

split lid into top and bottom parts
(lid, bottom) = (

box.faces(">Z")
.workplane(-p_thickness - p_lipHeight)
.split(keepTop=True, keepBottom=True)
.all()

) # splits into two solids

(continues on next page)

3.9. Examples 79

CadQuery Documentation, Release 2.4.0

(continued from previous page)

translate the lid, and subtract the bottom from it to produce the lid inset
lowerLid = lid.translate((0, 0, -p_lipHeight))
cutlip = lowerLid.cut(bottom).translate(

(p_outerWidth + p_thickness, 0, p_thickness - p_outerHeight + p_lipHeight)
)

compute centers for screw holes
topOfLidCenters = (

cutlip.faces(">Z")
.workplane(centerOption="CenterOfMass")
.rect(POSTWIDTH, POSTLENGTH, forConstruction=True)
.vertices()

)

add holes of the desired type
if p_boreDiameter > 0 and p_boreDepth > 0:

topOfLid = topOfLidCenters.cboreHole(
p_screwpostID, p_boreDiameter, p_boreDepth, 2.0 * p_thickness

)
elif p_countersinkDiameter > 0 and p_countersinkAngle > 0:

topOfLid = topOfLidCenters.cskHole(
p_screwpostID, p_countersinkDiameter, p_countersinkAngle, 2.0 * p_thickness

)
else:

topOfLid = topOfLidCenters.hole(p_screwpostID, 2.0 * p_thickness)

flip lid upside down if desired
if p_flipLid:

topOfLid = topOfLid.rotateAboutCenter((1, 0, 0), 180)

return the combined result
result = topOfLid.union(bottom)

Api References

• Workplane.circle()
• Workplane.rect()
• Workplane.extrude()
• Workplane.box()
• Workplane.all()
• Workplane.faces()

• Workplane.vertices()
• Workplane.edges()
• Workplane.workplane()
• Workplane.fillet()
• Workplane.cut()
• Workplane.union()

• Workplane.
rotateAboutCenter()

• Workplane.cboreHole()
• Workplane.cskHole()
• Workplane.hole()

80 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.9.30 Lego Brick

This script will produce any size regular rectangular Lego(TM) brick. Its only tricky because of the logic regarding
the underside of the brick.

#####
Inputs
######
lbumps = 6 # number of bumps long
wbumps = 2 # number of bumps wide
thin = True # True for thin, False for thick

#
Lego Brick Constants-- these make a Lego brick a Lego :)
#
pitch = 8.0
clearance = 0.1
bumpDiam = 4.8
bumpHeight = 1.8
if thin:

height = 3.2
else:

height = 9.6

t = (pitch - (2 * clearance) - bumpDiam) / 2.0
postDiam = pitch - t # works out to 6.5
total_length = lbumps * pitch - 2.0 * clearance
total_width = wbumps * pitch - 2.0 * clearance

make the base
s = cq.Workplane("XY").box(total_length, total_width, height)

shell inwards not outwards
s = s.faces("<Z").shell(-1.0 * t)

make the bumps on the top
s = (

s.faces(">Z")
.workplane()
.rarray(pitch, pitch, lbumps, wbumps, True)
.circle(bumpDiam / 2.0)
.extrude(bumpHeight)

)

add posts on the bottom. posts are different diameter depending on geometry
solid studs for 1 bump, tubes for multiple, none for 1x1
tmp = s.faces("<Z").workplane(invert=True)

if lbumps > 1 and wbumps > 1:
tmp = (

tmp.rarray(pitch, pitch, lbumps - 1, wbumps - 1, center=True)
.circle(postDiam / 2.0)
.circle(bumpDiam / 2.0)

(continues on next page)

3.9. Examples 81

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.extrude(height - t)
)

elif lbumps > 1:
tmp = (

tmp.rarray(pitch, pitch, lbumps - 1, 1, center=True)
.circle(t)
.extrude(height - t)

)
elif wbumps > 1:

tmp = (
tmp.rarray(pitch, pitch, 1, wbumps - 1, center=True)
.circle(t)
.extrude(height - t)

)
else:

tmp = s

3.9.31 Braille Example

from collections import namedtuple

text_lines is a list of text lines.
Braille (converted with braille-converter:
https://github.com/jpaugh/braille-converter.git).
text_lines = [" "]
See http://www.tiresias.org/research/reports/braille_cell.htm for examples
of braille cell geometry.
horizontal_interdot = 2.5
vertical_interdot = 2.5
horizontal_intercell = 6
vertical_interline = 10
dot_height = 0.5
dot_diameter = 1.3

base_thickness = 1.5

End of configuration.
BrailleCellGeometry = namedtuple(

"BrailleCellGeometry",
(

"horizontal_interdot",
"vertical_interdot",
"intercell",
"interline",
"dot_height",
"dot_diameter",

),
)

(continues on next page)

82 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

class Point(object):
def __init__(self, x, y):

self.x = x
self.y = y

def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)

def __len__(self):
return 2

def __getitem__(self, index):
return (self.x, self.y)[index]

def __str__(self):
return "({}, {})".format(self.x, self.y)

def brailleToPoints(text, cell_geometry):
Unicode bit pattern (cf. https://en.wikipedia.org/wiki/Braille_Patterns).
mask1 = 0b00000001
mask2 = 0b00000010
mask3 = 0b00000100
mask4 = 0b00001000
mask5 = 0b00010000
mask6 = 0b00100000
mask7 = 0b01000000
mask8 = 0b10000000
masks = (mask1, mask2, mask3, mask4, mask5, mask6, mask7, mask8)

Corresponding dot position
w = cell_geometry.horizontal_interdot
h = cell_geometry.vertical_interdot
pos1 = Point(0, 2 * h)
pos2 = Point(0, h)
pos3 = Point(0, 0)
pos4 = Point(w, 2 * h)
pos5 = Point(w, h)
pos6 = Point(w, 0)
pos7 = Point(0, -h)
pos8 = Point(w, -h)
pos = (pos1, pos2, pos3, pos4, pos5, pos6, pos7, pos8)

Braille blank pattern (u'\u2800').
blank = ""
points = []
Position of dot1 along the x-axis (horizontal).
character_origin = 0
for c in text:

for m, p in zip(masks, pos):
delta_to_blank = ord(c) - ord(blank)

(continues on next page)

3.9. Examples 83

CadQuery Documentation, Release 2.4.0

(continued from previous page)

if m & delta_to_blank:
points.append(p + Point(character_origin, 0))

character_origin += cell_geometry.intercell
return points

def get_plate_height(text_lines, cell_geometry):
cell_geometry.vertical_interdot is also used as space between base
borders and characters.
return (

2 * cell_geometry.vertical_interdot
+ 2 * cell_geometry.vertical_interdot
+ (len(text_lines) - 1) * cell_geometry.interline

)

def get_plate_width(text_lines, cell_geometry):
cell_geometry.horizontal_interdot is also used as space between base
borders and characters.
max_len = max([len(t) for t in text_lines])
return (

2 * cell_geometry.horizontal_interdot
+ cell_geometry.horizontal_interdot
+ (max_len - 1) * cell_geometry.intercell

)

def get_cylinder_radius(cell_geometry):
"""Return the radius the cylinder should have
The cylinder have the same radius as the half-sphere make the dots (the
hidden and the shown part of the dots).
The radius is such that the spherical cap with diameter
cell_geometry.dot_diameter has a height of cell_geometry.dot_height.
"""
h = cell_geometry.dot_height
r = cell_geometry.dot_diameter / 2
return (r**2 + h**2) / 2 / h

def get_base_plate_thickness(plate_thickness, cell_geometry):
"""Return the height on which the half spheres will sit"""
return (

plate_thickness + get_cylinder_radius(cell_geometry) - cell_geometry.dot_height
)

def make_base(text_lines, cell_geometry, plate_thickness):
base_width = get_plate_width(text_lines, cell_geometry)
base_height = get_plate_height(text_lines, cell_geometry)
base_thickness = get_base_plate_thickness(plate_thickness, cell_geometry)
base = cq.Workplane("XY").box(

base_width, base_height, base_thickness, centered=False
(continues on next page)

84 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

)
return base

def make_embossed_plate(text_lines, cell_geometry):
"""Make an embossed plate with dots as spherical caps
Method:

- make a thin plate on which sit cylinders
- fillet the upper edge of the cylinders so to get pseudo half-spheres
- make the union with a thicker plate so that only the sphere caps stay
"visible".

"""
base = make_base(text_lines, cell_geometry, base_thickness)

dot_pos = []
base_width = get_plate_width(text_lines, cell_geometry)
base_height = get_plate_height(text_lines, cell_geometry)
y = base_height - 3 * cell_geometry.vertical_interdot
line_start_pos = Point(cell_geometry.horizontal_interdot, y)
for text in text_lines:

dots = brailleToPoints(text, cell_geometry)
dots = [p + line_start_pos for p in dots]
dot_pos += dots
line_start_pos += Point(0, -cell_geometry.interline)

r = get_cylinder_radius(cell_geometry)
base = (

base.faces(">Z")
.vertices("<XY")
.workplane()
.pushPoints(dot_pos)
.circle(r)
.extrude(r)

)
Make a fillet almost the same radius to get a pseudo spherical cap.
base = base.faces(">Z").edges().fillet(r - 0.001)
hidding_box = cq.Workplane("XY").box(

base_width, base_height, base_thickness, centered=False
)
result = hidding_box.union(base)
return result

_cell_geometry = BrailleCellGeometry(
horizontal_interdot,
vertical_interdot,
horizontal_intercell,
vertical_interline,
dot_height,
dot_diameter,

)

(continues on next page)

3.9. Examples 85

CadQuery Documentation, Release 2.4.0

(continued from previous page)

if base_thickness < get_cylinder_radius(_cell_geometry):
raise ValueError("Base thickness should be at least {}".format(dot_height))

result = make_embossed_plate(text_lines, _cell_geometry)

3.9.32 Panel With Various Connector Holes

The dimensions of the model. These can be modified rather than changing the
object's code directly.
width = 400
height = 500
thickness = 2

Create a plate with two polygons cut through it
result = cq.Workplane("front").box(width, height, thickness)

h_sep = 60
for idx in range(4):

result = (
result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(157, 210 - idx * h_sep)
.moveTo(-23.5, 0)
.circle(1.6)
.moveTo(23.5, 0)
.circle(1.6)
.moveTo(-17.038896, -5.7)
.threePointArc((-19.44306, -4.70416), (-20.438896, -2.3))
.lineTo(-21.25, 2.3)
.threePointArc((-20.25416, 4.70416), (-17.85, 5.7))
.lineTo(17.85, 5.7)
.threePointArc((20.25416, 4.70416), (21.25, 2.3))
.lineTo(20.438896, -2.3)
.threePointArc((19.44306, -4.70416), (17.038896, -5.7))
.close()
.cutThruAll()

)

for idx in range(4):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(157, -30 - idx * h_sep)
.moveTo(-16.65, 0)
.circle(1.6)
.moveTo(16.65, 0)
.circle(1.6)
.moveTo(-10.1889, -5.7)
.threePointArc((-12.59306, -4.70416), (-13.5889, -2.3))
.lineTo(-14.4, 2.3)
.threePointArc((-13.40416, 4.70416), (-11, 5.7))
.lineTo(11, 5.7)

(continues on next page)

86 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.threePointArc((13.40416, 4.70416), (14.4, 2.3))

.lineTo(13.5889, -2.3)

.threePointArc((12.59306, -4.70416), (10.1889, -5.7))

.close()

.cutThruAll()
)

h_sep4DB9 = 30
for idx in range(8):

result = (
result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(91, 225 - idx * h_sep4DB9)
.moveTo(-12.5, 0)
.circle(1.6)
.moveTo(12.5, 0)
.circle(1.6)
.moveTo(-6.038896, -5.7)
.threePointArc((-8.44306, -4.70416), (-9.438896, -2.3))
.lineTo(-10.25, 2.3)
.threePointArc((-9.25416, 4.70416), (-6.85, 5.7))
.lineTo(6.85, 5.7)
.threePointArc((9.25416, 4.70416), (10.25, 2.3))
.lineTo(9.438896, -2.3)
.threePointArc((8.44306, -4.70416), (6.038896, -5.7))
.close()
.cutThruAll()

)

for idx in range(4):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(25, 210 - idx * h_sep)
.moveTo(-23.5, 0)
.circle(1.6)
.moveTo(23.5, 0)
.circle(1.6)
.moveTo(-17.038896, -5.7)
.threePointArc((-19.44306, -4.70416), (-20.438896, -2.3))
.lineTo(-21.25, 2.3)
.threePointArc((-20.25416, 4.70416), (-17.85, 5.7))
.lineTo(17.85, 5.7)
.threePointArc((20.25416, 4.70416), (21.25, 2.3))
.lineTo(20.438896, -2.3)
.threePointArc((19.44306, -4.70416), (17.038896, -5.7))
.close()
.cutThruAll()

)

for idx in range(4):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(25, -30 - idx * h_sep)

(continues on next page)

3.9. Examples 87

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.moveTo(-16.65, 0)

.circle(1.6)

.moveTo(16.65, 0)

.circle(1.6)

.moveTo(-10.1889, -5.7)

.threePointArc((-12.59306, -4.70416), (-13.5889, -2.3))

.lineTo(-14.4, 2.3)

.threePointArc((-13.40416, 4.70416), (-11, 5.7))

.lineTo(11, 5.7)

.threePointArc((13.40416, 4.70416), (14.4, 2.3))

.lineTo(13.5889, -2.3)

.threePointArc((12.59306, -4.70416), (10.1889, -5.7))

.close()

.cutThruAll()
)

for idx in range(8):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(-41, 225 - idx * h_sep4DB9)
.moveTo(-12.5, 0)
.circle(1.6)
.moveTo(12.5, 0)
.circle(1.6)
.moveTo(-6.038896, -5.7)
.threePointArc((-8.44306, -4.70416), (-9.438896, -2.3))
.lineTo(-10.25, 2.3)
.threePointArc((-9.25416, 4.70416), (-6.85, 5.7))
.lineTo(6.85, 5.7)
.threePointArc((9.25416, 4.70416), (10.25, 2.3))
.lineTo(9.438896, -2.3)
.threePointArc((8.44306, -4.70416), (6.038896, -5.7))
.close()
.cutThruAll()

)

for idx in range(4):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(-107, 210 - idx * h_sep)
.moveTo(-23.5, 0)
.circle(1.6)
.moveTo(23.5, 0)
.circle(1.6)
.moveTo(-17.038896, -5.7)
.threePointArc((-19.44306, -4.70416), (-20.438896, -2.3))
.lineTo(-21.25, 2.3)
.threePointArc((-20.25416, 4.70416), (-17.85, 5.7))
.lineTo(17.85, 5.7)
.threePointArc((20.25416, 4.70416), (21.25, 2.3))
.lineTo(20.438896, -2.3)
.threePointArc((19.44306, -4.70416), (17.038896, -5.7))

(continues on next page)

88 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.close()

.cutThruAll()
)

for idx in range(4):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(-107, -30 - idx * h_sep)
.circle(14)
.rect(24.7487, 24.7487, forConstruction=True)
.vertices()
.hole(3.2)
.cutThruAll()

)

for idx in range(8):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(-173, 225 - idx * h_sep4DB9)
.moveTo(-12.5, 0)
.circle(1.6)
.moveTo(12.5, 0)
.circle(1.6)
.moveTo(-6.038896, -5.7)
.threePointArc((-8.44306, -4.70416), (-9.438896, -2.3))
.lineTo(-10.25, 2.3)
.threePointArc((-9.25416, 4.70416), (-6.85, 5.7))
.lineTo(6.85, 5.7)
.threePointArc((9.25416, 4.70416), (10.25, 2.3))
.lineTo(9.438896, -2.3)
.threePointArc((8.44306, -4.70416), (6.038896, -5.7))
.close()
.cutThruAll()

)

for idx in range(4):
result = (

result.workplane(offset=1, centerOption="CenterOfBoundBox")
.center(-173, -30 - idx * h_sep)
.moveTo(-2.9176, -5.3)
.threePointArc((-6.05, 0), (-2.9176, 5.3))
.lineTo(2.9176, 5.3)
.threePointArc((6.05, 0), (2.9176, -5.3))
.close()
.cutThruAll()

)

3.9. Examples 89

CadQuery Documentation, Release 2.4.0

3.9.33 Cycloidal gear

You can define complex geometries using the parametricCurve functionality. This specific examples generates a helical
cycloidal gear.

import cadquery as cq
from math import sin, cos, pi, floor

define the generating function
def hypocycloid(t, r1, r2):

return (
(r1 - r2) * cos(t) + r2 * cos(r1 / r2 * t - t),
(r1 - r2) * sin(t) + r2 * sin(-(r1 / r2 * t - t)),

)

def epicycloid(t, r1, r2):
return (

(r1 + r2) * cos(t) - r2 * cos(r1 / r2 * t + t),
(r1 + r2) * sin(t) - r2 * sin(r1 / r2 * t + t),

)

def gear(t, r1=4, r2=1):
if (-1) ** (1 + floor(t / 2 / pi * (r1 / r2))) < 0:

return epicycloid(t, r1, r2)
else:

return hypocycloid(t, r1, r2)

create the gear profile and extrude it
result = (

cq.Workplane("XY")
.parametricCurve(lambda t: gear(t * 2 * pi, 6, 1))
.twistExtrude(15, 90)
.faces(">Z")
.workplane()
.circle(2)
.cutThruAll()

)

3.10 API Reference

The CadQuery API is made up of 4 main objects:

• Sketch – Construct 2D sketches

• Workplane – Wraps a topological entity and provides a 2D modelling context.

• Selector – Filter and select things

• Assembly – Combine objects into assemblies.

90 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

This page lists methods of these objects grouped by functional area

See also:

This page lists api methods grouped by functional area. Use CadQuery Class Summary to see methods alphabetically
by class.

3.10.1 Sketch initialization

Creating new sketches.

Sketch (parent, locs) 2D sketch.
Sketch.importDXF(filename[, tol, exclude, ...]) Import a DXF file and construct face(s)
Workplane.sketch () Initialize and return a sketch
Sketch.finalize() Finish sketch construction and return the parent.
Sketch.copy() Create a partial copy of the sketch.
Sketch.located(loc) Create a partial copy of the sketch with a new location.
Sketch.moved(loc) Create a partial copy of the sketch with moved _faces.

3.10.2 Sketch selection

Selecting, tagging and manipulating elements.

Sketch.tag(tag) Tag current selection.
Sketch.select(*tags) Select based on tags.
Sketch.reset() Reset current selection.
Sketch.delete() Delete selected object.
Sketch.faces([s, tag]) Select faces.
Sketch.edges([s, tag]) Select edges.
Sketch.vertices([s, tag]) Select vertices.

3.10. API Reference 91

CadQuery Documentation, Release 2.4.0

3.10.3 Sketching with faces

Sketching using the face-based API.

Sketch.face(b[, angle, mode, tag, ...]) Construct a face from a wire or edges.
Sketch.rect(w, h[, angle, mode, tag]) Construct a rectangular face.
Sketch.circle(r[, mode, tag]) Construct a circular face.
Sketch.ellipse(a1, a2[, angle, mode, tag]) Construct an elliptical face.
Sketch.trapezoid(w, h, a1[, a2, angle, ...]) Construct a trapezoidal face.
Sketch.slot(w, h[, angle, mode, tag]) Construct a slot-shaped face.
Sketch.regularPolygon(r, n[, angle, mode, tag]) Construct a regular polygonal face.
Sketch.polygon(pts[, angle, mode, tag]) Construct a polygonal face.
Sketch.rarray(xs, ys, nx, ny) Generate a rectangular array of locations.
Sketch.parray(r, a1, da, n[, rotate]) Generate a polar array of locations.
Sketch.distribute(n[, start, stop, rotate]) Distribute locations along selected edges or wires.
Sketch.each (callback[, mode, tag, ...]) Apply a callback on all applicable entities.
Sketch.push (locs[, tag]) Set current selection to given locations or points.
Sketch.hull([mode, tag]) Generate a convex hull from current selection or all ob-

jects.
Sketch.offset(d[, mode, tag]) Offset selected wires or edges.
Sketch.fillet(d) Add a fillet based on current selection.
Sketch.chamfer(d) Add a chamfer based on current selection.
Sketch.clean() Remove internal wires.

3.10.4 Sketching with edges and constraints

Sketching using the edge-based API.

Sketch.edge(val[, tag, forConstruction]) Add an edge to the sketch.
Sketch.segment(...) Construct a segment.
Sketch.arc(...) Construct an arc.
Sketch.spline(...) Construct a spline edge.
Sketch.close([tag]) Connect last edge to the first one.
Sketch.assemble([mode, tag]) Assemble edges into faces.
Sketch.constrain(...) Add a constraint.
Sketch.solve() Solve current constraints and update edge positions.

3.10.5 Initialization

Creating new workplanes and object chains

Workplane(, obj=None)) Defines a coordinate system in space, in which 2D coor-
dinates can be used.

92 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.10.6 2D Operations

Creating 2D constructs that can be used to create 3D features.

All 2D operations require a Workplane object to be created.

Workplane.center(x, y) Shift local coordinates to the specified location.
Workplane.lineTo(x, y[, forConstruction]) Make a line from the current point to the provided point
Workplane.line(xDist, yDist[, forConstruction]) Make a line from the current point to the provided point,

using dimensions relative to the current point
Workplane.vLine(distance[, forConstruction]) Make a vertical line from the current point the provided

distance
Workplane.vLineTo(yCoord[, forConstruction]) Make a vertical line from the current point to the pro-

vided y coordinate.
Workplane.hLine(distance[, forConstruction]) Make a horizontal line from the current point the pro-

vided distance
Workplane.hLineTo(xCoord[, forConstruction]) Make a horizontal line from the current point to the pro-

vided x coordinate.
Workplane.polarLine(distance, angle[, ...]) Make a line of the given length, at the given angle from

the current point
Workplane.polarLineTo(distance, angle[, ...]) Make a line from the current point to the given polar

coordinates
Workplane.moveTo([x, y]) Move to the specified point, without drawing.
Workplane.move([xDist, yDist]) Move the specified distance from the current point, with-

out drawing.
Workplane.spline(listOfXYTuple[, tangents, ...]) Create a spline interpolated through the provided points

(2D or 3D).
Workplane.parametricCurve(func[, N, start, ...]) Create a spline curve approximating the provided func-

tion.
Workplane.parametricSurface(func[, N, ...]) Create a spline surface approximating the provided func-

tion.
Workplane.threePointArc(point1, point2[, ...]) Draw an arc from the current point, through point1, and

ending at point2
Workplane.sagittaArc(endPoint, sag[, ...]) Draw an arc from the current point to endPoint with an

arc defined by the sag (sagitta).
Workplane.radiusArc(endPoint, radius[, ...]) Draw an arc from the current point to endPoint with an

arc defined by the radius.
Workplane.tangentArcPoint(endpoint[, ...]) Draw an arc as a tangent from the end of the current edge

to endpoint.
Workplane.mirrorY() Mirror entities around the y axis of the workplane plane.
Workplane.mirrorX() Mirror entities around the x axis of the workplane plane.
Workplane.wire([forConstruction]) Returns a CQ object with all pending edges connected

into a wire.
Workplane.rect(xLen, yLen[, centered, ...]) Make a rectangle for each item on the stack.
Workplane.circle(radius[, forConstruction]) Make a circle for each item on the stack.
Workplane.ellipse(x_radius, y_radius[, ...]) Make an ellipse for each item on the stack.
Workplane.ellipseArc(x_radius, y_radius[, ...]) Draw an elliptical arc with x and y radiuses either with

start point at current point or or current point being the
center of the arc

Workplane.polyline(listOfXYTuple[, ...]) Create a polyline from a list of points
Workplane.close() End construction, and attempt to build a closed wire.

continues on next page

3.10. API Reference 93

CadQuery Documentation, Release 2.4.0

Table 1 – continued from previous page
Workplane.rarray(xSpacing, ySpacing, xCount, ...) Creates an array of points and pushes them onto the

stack.
Workplane.polarArray(radius, startAngle, ...) Creates a polar array of points and pushes them onto the

stack.
Workplane.slot2D(length, diameter[, angle]) Creates a rounded slot for each point on the stack.
Workplane.offset2D(d[, kind, forConstruction]) Creates a 2D offset wire.
Workplane.placeSketch (*sketches) Place the provided sketch(es) based on the current items

on the stack.

3.10.7 3D Operations

Some 3D operations also require an active 2D workplane, but some do not.

3D operations that require a 2D workplane to be active:

Workplane.cboreHole(diameter, cboreDiameter, ...) Makes a counterbored hole for each item on the stack.
Workplane.cskHole(diameter, cskDiameter, ...) Makes a countersunk hole for each item on the stack.
Workplane.hole(diameter[, depth, clean]) Makes a hole for each item on the stack.
Workplane.extrude(until[, combine, clean, ...]) Use all un-extruded wires in the parent chain to create a

prismatic solid.
Workplane.cut(toCut[, clean, tol]) Cuts the provided solid from the current solid, IE, per-

form a solid subtraction.
Workplane.cutBlind(until[, clean, both, taper]) Use all un-extruded wires in the parent chain to create a

prismatic cut from existing solid.
Workplane.cutThruAll([clean, taper]) Use all un-extruded wires in the parent chain to create a

prismatic cut from existing solid.
Workplane.box(length, width, height[, ...]) Return a 3d box with specified dimensions for each ob-

ject on the stack.
Workplane.sphere(radius[, direct, angle1, ...]) Returns a 3D sphere with the specified radius for each

point on the stack.
Workplane.wedge(dx, dy, dz, xmin, zmin, ...) Returns a 3D wedge with the specified dimensions for

each point on the stack.
Workplane.cylinder(height, radius[, direct, ...]) Returns a cylinder with the specified radius and height

for each point on the stack
Workplane.union([toUnion, clean, glue, tol]) Unions all of the items on the stack of toUnion with the

current solid.
Workplane.combine([clean, glue, tol]) Attempts to combine all of the items on the stack into a

single item.
Workplane.intersect(toIntersect[, clean, tol]) Intersects the provided solid from the current solid.
Workplane.loft([ruled, combine, clean]) Make a lofted solid, through the set of wires.
Workplane.sweep(path[, multisection, ...]) Use all un-extruded wires in the parent chain to create a

swept solid.
Workplane.twistExtrude(distance, angleDegrees) Extrudes a wire in the direction normal to the plane, but

also twists by the specified angle over the length of the
extrusion.

Workplane.revolve([angleDegrees, axisStart, ...]) Use all un-revolved wires in the parent chain to create a
solid.

Workplane.text(txt, fontsize, distance[, ...]) Returns a 3D text.

3D operations that do NOT require a 2D workplane to be active:

94 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Workplane.shell(thickness[, kind]) Remove the selected faces to create a shell of the speci-
fied thickness.

Workplane.fillet(radius) Fillets a solid on the selected edges.
Workplane.chamfer(length[, length2]) Chamfers a solid on the selected edges.
Workplane.split() Splits a solid on the stack into two parts, optionally keep-

ing the separate parts.
Workplane.rotate(axisStartPoint, ...) Returns a copy of all of the items on the stack rotated

through and angle around the axis of rotation.
Workplane.rotateAboutCenter(axisEndPoint, ...) Rotates all items on the stack by the specified angle,

about the specified axis
Workplane.translate(vec) Returns a copy of all of the items on the stack moved by

the specified translation vector.
Workplane.mirror([mirrorPlane, ...]) Mirror a single CQ object.

3.10.8 File Management and Export

Workplane.toSvg([opts]) Returns svg text that represents the first item on the stack.
Workplane.exportSvg(fileName) Exports the first item on the stack as an SVG file

importers.importStep(fileName) Accepts a file name and loads the STEP file into a cad-
query Workplane

importers.importDXF(filename[, tol, ...]) Loads a DXF file into a Workplane.
exporters.export(w, fname[, exportType, ...]) Export Workplane or Shape to file.
occ_impl.exporters.dxf.DxfDocument([...]) Create DXF document from CadQuery objects.

3.10.9 Iteration Methods

Methods that allow iteration over the stack or objects

Workplane.each (callback[, ...]) Runs the provided function on each value in the stack,
and collects the return values into a new CQ object.

Workplane.eachpoint(callback[, ...]) Same as each(), except each item on the stack is con-
verted into a point before it is passed into the callback
function.

3.10.10 Stack and Selector Methods

CadQuery methods that operate on the stack

3.10. API Reference 95

CadQuery Documentation, Release 2.4.0

Workplane.all() Return a list of all CQ objects on the stack.
Workplane.size() Return the number of objects currently on the stack
Workplane.vals() get the values in the current list
Workplane.add() Adds an object or a list of objects to the stack
Workplane.val() Return the first value on the stack.
Workplane.first() Return the first item on the stack
Workplane.item(i) Return the ith item on the stack.
Workplane.last() Return the last item on the stack.
Workplane.end([n]) Return the nth parent of this CQ element
Workplane.vertices([selector, tag]) Select the vertices of objects on the stack, optionally fil-

tering the selection.
Workplane.faces([selector, tag]) Select the faces of objects on the stack, optionally filter-

ing the selection.
Workplane.edges([selector, tag]) Select the edges of objects on the stack, optionally filter-

ing the selection.
Workplane.wires([selector, tag]) Select the wires of objects on the stack, optionally filter-

ing the selection.
Workplane.solids([selector, tag]) Select the solids of objects on the stack, optionally filter-

ing the selection.
Workplane.shells([selector, tag]) Select the shells of objects on the stack, optionally filter-

ing the selection.
Workplane.compounds([selector, tag]) Select compounds on the stack, optionally filtering the

selection.

3.10.11 Selectors

Objects that filter and select CAD objects. Selectors are used to select existing geometry as a basis for further operations.

96 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

NearestToPointSelector(pnt) Selects object nearest the provided point.
BoxSelector(point0, point1[, boundingbox]) Selects objects inside the 3D box defined by 2 points.
BaseDirSelector(vector[, tolerance]) A selector that handles selection on the basis of a single

direction vector.
ParallelDirSelector(vector[, tolerance]) Selects objects parallel with the provided direction.
DirectionSelector(vector[, tolerance]) Selects objects aligned with the provided direction.
DirectionNthSelector(vector, n[, ...]) Filters for objects parallel (or normal) to the specified

direction then returns the Nth one.
LengthNthSelector(n[, directionMax, tolerance]) Select the object(s) with the Nth length
AreaNthSelector(n[, directionMax, tolerance]) Selects the object(s) with Nth area
RadiusNthSelector(n[, directionMax, tolerance]) Select the object with the Nth radius.
PerpendicularDirSelector(vector[, tolerance]) Selects objects perpendicular with the provided direc-

tion.
TypeSelector(typeString) Selects objects having the prescribed geometry type.
DirectionMinMaxSelector(vector[, ...]) Selects objects closest or farthest in the specified direc-

tion.
CenterNthSelector(vector, n[, directionMax, ...]) Sorts objects into a list with order determined by the dis-

tance of their center projected onto the specified direc-
tion.

BinarySelector(left, right) Base class for selectors that operates with two other se-
lectors.

AndSelector(left, right) Intersection selector.
SumSelector(left, right) Union selector.
SubtractSelector(left, right) Difference selector.
InverseSelector(selector) Inverts the selection of given selector.
StringSyntaxSelector(selectorString) Filter lists objects using a simple string syntax.

3.10.12 Assemblies

Workplane and Shape objects can be connected together into assemblies

Assembly([obj, loc, name, color, metadata]) Nested assembly of Workplane and Shape objects defin-
ing their relative positions.

Assembly.add() Add a subassembly to the current assembly.
Assembly.save(path[, exportType, mode, ...]) Save assembly to a file.
Assembly.constrain() Define a new constraint.
Assembly.solve([verbosity]) Solve the constraints.
Constraint alias of ConstraintSpec
Color() Wrapper for the OCCT color object Quan-

tity_ColorRGBA.

3.10. API Reference 97

CadQuery Documentation, Release 2.4.0

3.11 Selectors Reference

CadQuery selector strings allow filtering various types of object lists. Most commonly, Edges, Faces, and Vertices are
used, but all objects types can be filtered.

Object lists are created by using the following methods, which each collect a type of shape:

• cadquery.Workplane.vertices()

• cadquery.Workplane.edges()

• cadquery.Workplane.faces()

• cadquery.Workplane.shells()

• cadquery.Workplane.solids()

Each of these methods accepts either a Selector object or a string. String selectors are simply shortcuts for using the full
object equivalents. If you pass one of the string patterns in, CadQuery will automatically use the associated selector
object.

Note: String selectors are simply shortcuts to concrete selector classes, which you can use or extend. For a full
description of how each selector class works, see CadQuery Class Summary.

If you find that the built-in selectors are not sufficient, you can easily plug in your own. See Extending CadQuery to
see how.

3.11.1 Combining Selectors

Selectors can be combined logically, currently defined operators include and, or, not and exc[ept] (set difference). For
example:

result = cq.Workplane("XY").box(2, 2, 2).edges("|Z and >Y").chamfer(0.2)

Much more complex expressions are possible as well:

result = (
cq.Workplane("XY")
.box(2, 2, 2)
.faces(">Z")
.shell(-0.2)
.faces(">Z")
.edges("not(<X or >X or <Y or >Y)")
.chamfer(0.1)

)

98 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.11.2 Filtering Faces

All types of string selectors work on faces. In most cases, the selector refers to the direction of the normal vector of
the face.

Warning: If a face is not planar, selectors are evaluated at the center of mass of the face. This can lead to results
that are quite unexpected.

The axis used in the listing below are for illustration: any axis would work similarly in each case.

Selector Selects Selector Class
+Z Faces with normal in +z direction cadquery.DirectionSelector
|Z Faces with normal parallel to z dir cadquery.ParallelDirSelector
-X Faces with normal in neg x direction cadquery.DirectionSelector
#Z Faces with normal orthogonal to z dir cadquery.PerpendicularDirSelector
%Plane Faces of type plane cadquery.TypeSelector
>Y Face farthest in the positive y dir cadquery.DirectionMinMaxSelector
<Y Face farthest in the negative y dir cadquery.DirectionMinMaxSelector
>Y[-2] 2nd farthest Face normal to the y dir cadquery.DirectionNthSelector
<Y[0] 1st closest Face normal to the y dir cadquery.DirectionNthSelector
>>Y[-2] 2nd farthest Face in the y dir cadquery.CenterNthSelector
<<Y[0] 1st closest Face in the y dir cadquery.CenterNthSelector

3.11.3 Filtering Edges

The selector usually refers to the direction of the edge.

Warning: Non-linear edges are not selected for any string selectors except type (%) and center (>>). Non-linear
edges are never returned when these filters are applied.

The axis used in the listing below are for illustration: any axis would work similarly in each case.

Selector Selects Selector Class
+Z Edges aligned in the Z direction cadquery.DirectionSelector
|Z Edges parallel to z direction cadquery.ParallelDirSelector
-X Edges aligned in neg x direction cadquery.DirectionSelector
#Z Edges perpendicular to z direction cadquery.PerpendicularDirSelector
%Line Edges of type line cadquery.TypeSelector
>Y Edges farthest in the positive y dir cadquery.DirectionMinMaxSelector
<Y Edges farthest in the negative y dir cadquery.DirectionMinMaxSelector
>Y[1] 2nd closest parallel edge in the positive y dir cadquery.DirectionNthSelector
<Y[-2] 2nd farthest parallel edge in the negative y dir cadquery.DirectionNthSelector
>>Y[-2] 2nd farthest edge in the y dir cadquery.CenterNthSelector
<<Y[0] 1st closest edge in the y dir cadquery.CenterNthSelector

3.11. Selectors Reference 99

CadQuery Documentation, Release 2.4.0

3.11.4 Filtering Vertices

Only a few of the filter types apply to vertices. The location of the vertex is the subject of the filter.

Selector Selects Selector Class
>Y Vertices farthest in the positive y dir cadquery.DirectionMinMaxSelector
<Y Vertices farthest in the negative y dir cadquery.DirectionMinMaxSelector
>>Y[-2] 2nd farthest vertex in the y dir cadquery.CenterNthSelector
<<Y[0] 1st closest vertex in the y dir cadquery.CenterNthSelector

3.11.5 User-defined Directions

It is possible to use user defined vectors as a basis for the selectors. For example:

result = cq.Workplane("XY").box(10, 10, 10)

chamfer only one edge
result = result.edges(">(-1, 1, 0)").chamfer(1)

3.11.6 Topological Selectors

Is is also possible to use topological relations to select objects. Currently the following methods are supported:

• cadquery.Workplane.ancestors()

• cadquery.Workplane.siblings()

Ancestors allows to select all objects containing currently selected object.

result = cq.Workplane("XY").box(10, 10, 10).faces(">Z").edges("<Y")

result = result.ancestors("Face")

Siblings allows to select all objects of the same type as selection that are connected via the specfied kind of elements.

result = cq.Workplane("XY").box(10, 10, 10).faces(">Z")

result = result.siblings("Edge")

3.11.7 Using selectors with Shape and Sketch objects

It is possible to use selectors with cadquery.Shape and cadquery.Sketch objects. This includes chaining and
combining.

box = cq.Solid.makeBox(1,2,3)

select top and bottom wires
result = box.faces(">Z or <Z").wires()

100 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.12 CadQuery Class Summary

This page documents all of the methods and functions of the CadQuery classes, organized alphabetically.

See also:

For a listing organized by functional area, see the API Reference

3.12.1 Core Classes

Sketch (parent, locs) 2D sketch.
Workplane(, obj=None)) Defines a coordinate system in space, in which 2D coor-

dinates can be used.
Assembly([obj, loc, name, color, metadata]) Nested assembly of Workplane and Shape objects defin-

ing their relative positions.
Constraint alias of ConstraintSpec

3.12.2 Topological Classes

Shape(obj) Represents a shape in the system.
Vertex(obj[, forConstruction]) A Single Point in Space
Edge(obj) A trimmed curve that represents the border of a face
cadquery.occ_impl.shapes.Mixin1D()

Wire(obj) A series of connected, ordered Edges, that typically
bounds a Face

Face(obj) a bounded surface that represents part of the boundary
of a solid

Shell(obj) the outer boundary of a surface
cadquery.occ_impl.shapes.Mixin3D()

Solid(obj) a single solid
Compound(obj) a collection of disconnected solids

3.12.3 Geometry Classes

Vector() Create a 3-dimensional vector
Matrix() A 3d , 4x4 transformation matrix.
Plane(origin[, xDir, normal]) A 2D coordinate system in space
Location() Location in 3D space.

3.12. CadQuery Class Summary 101

CadQuery Documentation, Release 2.4.0

3.12.4 Selector Classes

Selector() Filters a list of objects.
NearestToPointSelector(pnt) Selects object nearest the provided point.
BoxSelector(point0, point1[, boundingbox]) Selects objects inside the 3D box defined by 2 points.
BaseDirSelector(vector[, tolerance]) A selector that handles selection on the basis of a single

direction vector.
ParallelDirSelector(vector[, tolerance]) Selects objects parallel with the provided direction.
DirectionSelector(vector[, tolerance]) Selects objects aligned with the provided direction.
PerpendicularDirSelector(vector[, tolerance]) Selects objects perpendicular with the provided direc-

tion.
TypeSelector(typeString) Selects objects having the prescribed geometry type.
RadiusNthSelector(n[, directionMax, tolerance]) Select the object with the Nth radius.
CenterNthSelector(vector, n[, directionMax, ...]) Sorts objects into a list with order determined by the dis-

tance of their center projected onto the specified direc-
tion.

DirectionMinMaxSelector(vector[, ...]) Selects objects closest or farthest in the specified direc-
tion.

DirectionNthSelector(vector, n[, ...]) Filters for objects parallel (or normal) to the specified
direction then returns the Nth one.

LengthNthSelector(n[, directionMax, tolerance]) Select the object(s) with the Nth length
AreaNthSelector(n[, directionMax, tolerance]) Selects the object(s) with Nth area
BinarySelector(left, right) Base class for selectors that operates with two other se-

lectors.
AndSelector(left, right) Intersection selector.
SumSelector(left, right) Union selector.
SubtractSelector(left, right) Difference selector.
InverseSelector(selector) Inverts the selection of given selector.
StringSyntaxSelector(selectorString) Filter lists objects using a simple string syntax.

3.12.5 Class Details

class cadquery.Assembly(obj: Optional[Union[Shape, Workplane]] = None, loc: Optional[Location] = None,
name: Optional[str] = None, color: Optional[Color] = None, metadata:
Optional[Dict[str, Any]] = None)

Bases: object

Nested assembly of Workplane and Shape objects defining their relative positions.

Parameters

• obj (Optional[Union[Shape, Workplane]]) –

• loc (Location) –

• name (str) –

• color (Optional[Color]) –

• metadata (Dict[str, Any]) –

__init__(obj: Optional[Union[Shape, Workplane]] = None, loc: Optional[Location] = None, name:
Optional[str] = None, color: Optional[Color] = None, metadata: Optional[Dict[str, Any]] =
None)

construct an assembly

102 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Parameters

• obj (Optional[Union[Shape, Workplane]]) – root object of the assembly (default:
None)

• loc (Optional[Location]) – location of the root object (default: None, interpreted as
identity transformation)

• name (Optional[str]) – unique name of the root object (default: None, resulting in an
UUID being generated)

• color (Optional[Color]) – color of the added object (default: None)

• metadata (Optional[Dict[str, Any]]) – a store for user-defined metadata (default:
None)

Returns
An Assembly object.

To create an empty assembly use:

assy = Assembly(None)

To create one constraint a root object:

b = Workplane().box(1, 1, 1)
assy = Assembly(b, Location(Vector(0, 0, 1)), name="root")

__iter__(loc: Optional[Location] = None, name: Optional[str] = None, color: Optional[Color] = None)→
Iterator[Tuple[Shape, str, Location, Optional[Color]]]

Assembly iterator yielding shapes, names, locations and colors.

Parameters

• loc (Optional[Location]) –

• name (Optional[str]) –

• color (Optional[Color]) –

Return type
Iterator[Tuple[Shape, str, Location, Optional[Color]]]

__weakref__

list of weak references to the object (if defined)

add(obj: Assembly, loc: Optional[Location] = None, name: Optional[str] = None, color: Optional[Color] =
None)→ Assembly

add(obj: Optional[Union[Shape, Workplane]], loc: Optional[Location] = None, name: Optional[str] =
None, color: Optional[Color] = None, metadata: Optional[Dict[str, Any]] = None)→ Assembly
Add a subassembly to the current assembly.

constrain(q1: str, q2: str, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed', 'FixedPoint',
'FixedAxis', 'PointOnLine', 'FixedRotation'], param: Any = None)→ Assembly

constrain(q1: str, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed', 'FixedPoint', 'FixedAxis',
'PointOnLine', 'FixedRotation'], param: Any = None)→ Assembly

constrain(id1: str, s1: Shape, id2: str, s2: Shape, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed',
'FixedPoint', 'FixedAxis', 'PointOnLine', 'FixedRotation'], param: Any = None)→ Assembly

3.12. CadQuery Class Summary 103

CadQuery Documentation, Release 2.4.0

constrain(id1: str, s1: Shape, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed', 'FixedPoint',
'FixedAxis', 'PointOnLine', 'FixedRotation'], param: Any = None)→ Assembly

Define a new constraint.

save(path: str, exportType: Optional[Literal['STEP', 'XML', 'GLTF', 'VTKJS', 'VRML', 'STL']] = None, mode:
Literal['default', 'fused'] = 'default', tolerance: float = 0.1, angularTolerance: float = 0.1, **kwargs)→
Assembly

Save assembly to a file.

Parameters

• path (str) – Path and filename for writing.

• exportType (Optional[Literal['STEP', 'XML', 'GLTF', 'VTKJS', 'VRML',
'STL']]) – export format (default: None, results in format being inferred form the
path)

• mode (Literal['default', 'fused']) – STEP only - See exportAssembly().

• tolerance (float) – the deflection tolerance, in model units. Only used for glTF, VRML.
Default 0.1.

• angularTolerance (float) – the angular tolerance, in radians. Only used for glTF,
VRML. Default 0.1.

• **kwargs – Additional keyword arguments. Only used for STEP, glTF and STL. See
exportAssembly().

• ascii (bool) – STL only - Sets whether or not STL export should be text or binary

Return type
Assembly

property shapes: List[Shape]

List of Shape objects in the .obj field

solve(verbosity: int = 0)→ Assembly
Solve the constraints.

Parameters
verbosity (int) –

Return type
Assembly

toCompound()→ Compound
Returns a Compound made from this Assembly (including all children) with the current Locations applied.
Usually this method would only be used after solving.

Return type
Compound

traverse()→ Iterator[Tuple[str, Assembly]]
Yield (name, child) pairs in a bottom-up manner

Return type
Iterator[Tuple[str, Assembly]]

class cadquery.BoundBox(bb: Bnd_Box)
Bases: object

A BoundingBox for an object or set of objects. Wraps the OCP one

104 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Parameters
bb (Bnd_Box) –

__init__(bb: Bnd_Box)→ None

Parameters
bb (Bnd_Box) –

Return type
None

__weakref__

list of weak references to the object (if defined)

add(obj: Union[Tuple[float, float, float], Vector, BoundBox], tol: Optional[float] = None)→ BoundBox
Returns a modified (expanded) bounding box

obj can be one of several things:

1. a 3-tuple corresponding to x,y, and z amounts to add

2. a vector, containing the x,y,z values to add

3. another bounding box, where a new box will be created that encloses both.

This bounding box is not changed.

Parameters

• obj (Union[Tuple[float, float, float], Vector, BoundBox]) –

• tol (Optional[float]) –

Return type
BoundBox

enlarge(tol: float)→ BoundBox
Returns a modified (expanded) bounding box, expanded in all directions by the tolerance value.

This means that the minimum values of its X, Y and Z intervals of the bounding box are reduced by the
absolute value of tol, while the maximum values are increased by the same amount.

Parameters
tol (float) –

Return type
BoundBox

static findOutsideBox2D(bb1: BoundBox, bb2: BoundBox)→ Optional[BoundBox]
Compares bounding boxes

Compares bounding boxes. Returns none if neither is inside the other. Returns the outer one if either is
outside the other.

BoundBox.isInside works in 3d, but this is a 2d bounding box, so it doesn’t work correctly plus, there was
all kinds of rounding error in the built-in implementation i do not understand.

Parameters

• bb1 (BoundBox) –

• bb2 (BoundBox) –

Return type
Optional[BoundBox]

3.12. CadQuery Class Summary 105

CadQuery Documentation, Release 2.4.0

isInside(b2: BoundBox)→ bool
Is the provided bounding box inside this one?

Parameters
b2 (BoundBox) –

Return type
bool

cadquery.CQ

alias of Workplane

class cadquery.Color(name: str)
class cadquery.Color(r: float, g: float, b: float, a: float = 0)
class cadquery.Color

Bases: object

Wrapper for the OCCT color object Quantity_ColorRGBA.

__init__(name: str)
__init__(r: float, g: float, b: float, a: float = 0)
__init__()

__weakref__

list of weak references to the object (if defined)

toTuple()→ Tuple[float, float, float, float]
Convert Color to RGB tuple.

Return type
Tuple[float, float, float, float]

class cadquery.Compound(obj: TopoDS_Shape)
Bases: Shape, Mixin3D

a collection of disconnected solids

Parameters
obj (TopoDS_Shape) –

__bool__()→ bool
Check if empty.

Return type
bool

ancestors(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid',
'Compound'])→ Compound

Iterate over ancestors, i.e. shapes of same kind within shape that contain elements of self.

Parameters

• shape (Shape) –

• kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid',
'CompSolid', 'Compound']) –

Return type
Compound

106 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

cut(*toCut: Shape, tol: Optional[float] = None)→ Compound
Remove the positional arguments from this Shape.

Parameters

• tol (Optional[float]) – Fuzzy mode tolerance

• toCut (Shape) –

Return type
Compound

fuse(*toFuse: Shape, glue: bool = False, tol: Optional[float] = None)→ Compound
Fuse shapes together

Parameters

• toFuse (Shape) –

• glue (bool) –

• tol (Optional[float]) –

Return type
Compound

intersect(*toIntersect: Shape, tol: Optional[float] = None)→ Compound
Intersection of the positional arguments and this Shape.

Parameters

• tol (Optional[float]) – Fuzzy mode tolerance

• toIntersect (Shape) –

Return type
Compound

classmethod makeCompound(listOfShapes: Iterable[Shape])→ Compound
Create a compound out of a list of shapes

Parameters
listOfShapes (Iterable[Shape]) –

Return type
Compound

classmethod makeText(text: str, size: float, height: float, font: str = 'Arial', fontPath: Optional[str] =
None, kind: Literal['regular', 'bold', 'italic'] = 'regular', halign: Literal['center',
'left', 'right'] = 'center', valign: Literal['center', 'top', 'bottom'] = 'center', position:
Plane = Plane(origin=(0.0, 0.0, 0.0), xDir=(1.0, 0.0, 0.0), normal=(0.0, 0.0, 1.0)))
→ Shape

Create a 3D text

Parameters

• text (str) –

• size (float) –

• height (float) –

• font (str) –

• fontPath (Optional[str]) –

3.12. CadQuery Class Summary 107

CadQuery Documentation, Release 2.4.0

• kind (Literal['regular', 'bold', 'italic']) –

• halign (Literal['center', 'left', 'right']) –

• valign (Literal['center', 'top', 'bottom']) –

• position (Plane) –

Return type
Shape

remove(shape: Shape)
Remove the specified shape.

Parameters
shape (Shape) –

siblings(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid',
'Compound'], level: int = 1)→ Compound

Iterate over siblings, i.e. shapes within shape that share subshapes of kind with the elements of self.

Parameters

• shape (Shape) –

• kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid',
'CompSolid', 'Compound']) –

• level (int) –

Return type
Compound

cadquery.Constraint

alias of ConstraintSpec

class cadquery.DirectionMinMaxSelector(vector: Vector, directionMax: bool = True, tolerance: float =
0.0001)

Bases: CenterNthSelector

Selects objects closest or farthest in the specified direction.

Applicability:
All object types. for a vertex, its point is used. for all other kinds of objects, the center of mass of the object
is used.

You can use the string shortcuts >(X|Y|Z) or <(X|Y|Z) if you want to select based on a cardinal direction.

For example this:

CQ(aCube).faces(DirectionMinMaxSelector((0, 0, 1), True))

Means to select the face having the center of mass farthest in the positive z direction, and is the same as:

CQ(aCube).faces(">Z")

Parameters

• vector (Vector) –

• directionMax (bool) –

• tolerance (float) –

108 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

__init__(vector: Vector, directionMax: bool = True, tolerance: float = 0.0001)

Parameters

• vector (Vector) –

• directionMax (bool) –

• tolerance (float) –

class cadquery.DirectionSelector(vector: Vector, tolerance: float = 0.0001)
Bases: BaseDirSelector

Selects objects aligned with the provided direction.

Applicability:
Linear Edges Planar Faces

Use the string syntax shortcut +/-(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(DirectionSelector((0, 0, 1)))

selects faces with the normal in the z direction, and is equivalent to:

CQ(aCube).faces("+Z")

Parameters

• vector (Vector) –

• tolerance (float) –

test(vec: Vector)→ bool
Test a specified vector. Subclasses override to provide other implementations

Parameters
vec (Vector) –

Return type
bool

class cadquery.Edge(obj: TopoDS_Shape)
Bases: Shape, Mixin1D

A trimmed curve that represents the border of a face

Parameters
obj (TopoDS_Shape) –

arcCenter()→ Vector
Center of an underlying circle or ellipse geometry.

Return type
Vector

close()→ Union[Edge, Wire]
Close an Edge

Return type
Union[Edge, Wire]

3.12. CadQuery Class Summary 109

CadQuery Documentation, Release 2.4.0

classmethod makeEllipse(x_radius: float, y_radius: float, pnt:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), xdir:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (1.0, 0.0, 0.0), angle1: float = 360.0,
angle2: float = 360.0, sense: ~typing.Literal[-1, 1] = 1)→ Edge

Makes an Ellipse centered at the provided point, having normal in the provided direction.

Parameters

• cls –

• x_radius (float) – x radius of the ellipse (along the x-axis of plane the ellipse should lie
in)

• y_radius (float) – y radius of the ellipse (along the y-axis of plane the ellipse should lie
in)

• pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
vector representing the center of the ellipse

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
vector representing the direction of the plane the ellipse should lie in

• angle1 (float) – start angle of arc

• angle2 (float) – end angle of arc (angle2 == angle1 return closed ellipse = default)

• sense (Literal[-1, 1]) – clockwise (-1) or counter clockwise (1)

• xdir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

Returns
an Edge

Return type
Edge

classmethod makeLine(v1: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int,
float], Union[int, float], Union[int, float]]], v2: Union[Vector, Tuple[Union[int,
float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int,
float]]])→ Edge

Create a line between two points

Parameters

• v1 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– Vector that represents the first point

110 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• v2 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– Vector that represents the second point

Returns
A linear edge between the two provided points

Return type
Edge

classmethod makeSpline(listOfVector: List[Vector], tangents: Optional[Sequence[Vector]] = None,
periodic: bool = False, parameters: Optional[Sequence[float]] = None, scale:
bool = True, tol: float = 1e-06)→ Edge

Interpolate a spline through the provided points.

Parameters

• listOfVector (List[Vector]) – a list of Vectors that represent the points

• tangents (Optional[Sequence[Vector]]) – tuple of Vectors specifying start and fin-
ish tangent

• periodic (bool) – creation of periodic curves

• parameters (Optional[Sequence[float]]) – the value of the parameter at each inter-
polation point. (The interpolated curve is represented as a vector-valued function of a scalar
parameter.) If periodic == True, then len(parameters) must be len(intepolation points) + 1,
otherwise len(parameters) must be equal to len(interpolation points).

• scale (bool) – whether to scale the specified tangent vectors before interpolating. Each
tangent is scaled, so it’s length is equal to the derivative of the Lagrange interpolated curve.
I.e., set this to True, if you want to use only the direction of the tangent vectors specified
by tangents, but not their magnitude.

• tol (float) – tolerance of the algorithm (consult OCC documentation). Used to check
that the specified points are not too close to each other, and that tangent vectors are not too
short. (In either case interpolation may fail.)

Returns
an Edge

Return type
Edge

classmethod makeSplineApprox(listOfVector: List[Vector], tol: float = 0.001, smoothing:
Optional[Tuple[float, float, float]] = None, minDeg: int = 1, maxDeg:
int = 6)→ Edge

Approximate a spline through the provided points.

Parameters

• listOfVector (List[Vector]) – a list of Vectors that represent the points

• tol (float) – tolerance of the algorithm (consult OCC documentation).

• smoothing (Optional[Tuple[float, float, float]]) – optional tuple of 3
weights use for variational smoothing (default: None)

• minDeg (int) – minimum spline degree. Enforced only when smothing is None (default:
1)

• maxDeg (int) – maximum spline degree (default: 6)

3.12. CadQuery Class Summary 111

CadQuery Documentation, Release 2.4.0

Returns
an Edge

Return type
Edge

classmethod makeTangentArc(v1: Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]], v2:
Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int,
float], Union[int, float], Union[int, float]]], v3: Union[Vector,
Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]])→ Edge

Makes a tangent arc from point v1, in the direction of v2 and ends at v3.

Parameters

• cls –

• v1 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– start vector

• v2 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– tangent vector

• v3 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– end vector

Returns
an edge

Return type
Edge

classmethod makeThreePointArc(v1: Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]], v2:
Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]], v3:
Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])→ Edge

Makes a three point arc through the provided points

Parameters

• cls –

• v1 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– start vector

• v2 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– middle vector

• v3 (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
– end vector

112 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Returns
an edge object through the three points

Return type
Edge

class cadquery.Face(obj: TopoDS_Shape)
Bases: Shape

a bounded surface that represents part of the boundary of a solid

Parameters
obj (TopoDS_Shape) –

Center()→ Vector

Returns
The point of the center of mass of this Shape

Return type
Vector

chamfer2D(d: float, vertices: Iterable[Vertex])→ Face
Apply 2D chamfer to a face

Parameters

• d (float) –

• vertices (Iterable[Vertex]) –

Return type
Face

fillet2D(radius: float, vertices: Iterable[Vertex])→ Face
Apply 2D fillet to a face

Parameters

• radius (float) –

• vertices (Iterable[Vertex]) –

Return type
Face

classmethod makeFromWires(outerWire: Wire, innerWires: List[Wire] = [])→ Face
Makes a planar face from one or more wires

Parameters

• outerWire (Wire) –

• innerWires (List[Wire]) –

Return type
Face

3.12. CadQuery Class Summary 113

CadQuery Documentation, Release 2.4.0

classmethod makeNSidedSurface(edges:
~typing.Iterable[~typing.Union[~cadquery.occ_impl.shapes.Edge,
~cadquery.occ_impl.shapes.Wire]], constraints:
~typing.Iterable[~typing.Union[~cadquery.occ_impl.shapes.Edge,
~cadquery.occ_impl.shapes.Wire, ~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]], ~OCP.gp.gp_Pnt]], continuity:
~OCP.GeomAbs.GeomAbs_Shape = <GeomAbs_Shape.GeomAbs_C0:
0>, degree: int = 3, nbPtsOnCur: int = 15, nbIter: int = 2, anisotropy:
bool = False, tol2d: float = 1e-05, tol3d: float = 0.0001, tolAng: float
= 0.01, tolCurv: float = 0.1, maxDeg: int = 8, maxSegments: int = 9)
→ Face

Returns a surface enclosed by a closed polygon defined by ‘edges’ and ‘constraints’.

Parameters

• edges (list of edges or wires) – edges

• constraints (list of points or edges) – constraints

• continuity (GeomAbs_Shape) – OCC.Core.GeomAbs continuity condition

• degree (int) – >=2

• nbPtsOnCur (int) – number of points on curve >= 15

• nbIter (int) – number of iterations >= 2

• anisotropy (bool) – bool Anisotropy

• tol2d (float) – 2D tolerance >0

• tol3d (float) – 3D tolerance >0

• tolAng (float) – angular tolerance

• tolCurv (float) – tolerance for curvature >0

• maxDeg (int) – highest polynomial degree >= 2

• maxSegments (int) – greatest number of segments >= 2

Return type
Face

classmethod makeRuledSurface(edgeOrWire1: Edge, edgeOrWire2: Edge)→ Face
classmethod makeRuledSurface(edgeOrWire1: Wire, edgeOrWire2: Wire)→ Face

makeRuledSurface(Edge|Wire,Edge|Wire) – Make a ruled surface Create a ruled surface out of two edges
or wires. If wires are used then these must have the same number of edges

classmethod makeSplineApprox(points: List[List[Vector]], tol: float = 0.01, smoothing:
Optional[Tuple[float, float, float]] = None, minDeg: int = 1, maxDeg:
int = 3)→ Face

Approximate a spline surface through the provided points.

Parameters

• points (List[List[Vector]]) – a 2D list of Vectors that represent the points

• tol (float) – tolerance of the algorithm (consult OCC documentation).

114 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• smoothing (Optional[Tuple[float, float, float]]) – optional tuple of 3
weights use for variational smoothing (default: None)

• minDeg (int) – minimum spline degree. Enforced only when smothing is None (default:
1)

• maxDeg (int) – maximum spline degree (default: 6)

Return type
Face

normalAt(locationVector: Optional[Vector] = None)→ Vector
Computes the normal vector at the desired location on the face.

Returns
a vector representing the direction

Parameters
locationVector (a vector that lies on the surface.) – the location to compute
the normal at. If none, the center of the face is used.

Return type
Vector

thicken(thickness: float)→ Solid
Return a thickened face

Parameters
thickness (float) –

Return type
Solid

toArcs(tolerance: float = 0.001)→ Face
Approximate planar face with arcs and straight line segments.

Parameters
tolerance (float) – Approximation tolerance.

Return type
Face

toPln()→ gp_Pln
Convert this face to a gp_Pln.

Note the Location of the resulting plane may not equal the center of this face, however the resulting plane
will still contain the center of this face.

Return type
gp_Pln

class cadquery.Location

class cadquery.Location(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]])

class cadquery.Location(t: Plane)
class cadquery.Location(t: Plane, v: Union[Vector, Tuple[Union[int, float], Union[int, float]],

Tuple[Union[int, float], Union[int, float], Union[int, float]]])
class cadquery.Location(t: TopLoc_Location)
class cadquery.Location(t: gp_Trsf)

3.12. CadQuery Class Summary 115

CadQuery Documentation, Release 2.4.0

class cadquery.Location(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]], ax: Union[Vector, Tuple[Union[int, float],
Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]],
angle: float)

Bases: object

Location in 3D space. Depending on usage can be absolute or relative.

This class wraps the TopLoc_Location class from OCCT. It can be used to move Shape objects in both relative
and absolute manner. It is the preferred type to locate objects in CQ.

__init__()→ None
__init__(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int,

float], Union[int, float]]])→ None
__init__(t: Plane)→ None
__init__(t: Plane, v: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],

Union[int, float], Union[int, float]]])→ None
__init__(t: TopLoc_Location)→ None
__init__(t: gp_Trsf)→ None
__init__(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int,

float], Union[int, float]]], ax: Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]], angle: float)→ None

__weakref__

list of weak references to the object (if defined)

toTuple()→ Tuple[Tuple[float, float, float], Tuple[float, float, float]]
Convert the location to a translation, rotation tuple.

Return type
Tuple[Tuple[float, float, float], Tuple[float, float, float]]

class cadquery.Matrix

class cadquery.Matrix(matrix: Union[gp_GTrsf, gp_Trsf])
class cadquery.Matrix(matrix: Sequence[Sequence[float]])

Bases: object

A 3d , 4x4 transformation matrix.

Used to move geometry in space.

The provided “matrix” parameter may be None, a gp_GTrsf, or a nested list of values.

If given a nested list, it is expected to be of the form:

[[m11, m12, m13, m14],
[m21, m22, m23, m24], [m31, m32, m33, m34]]

A fourth row may be given, but it is expected to be: [0.0, 0.0, 0.0, 1.0] since this is a transform matrix.

__getitem__(rc: Tuple[int, int])→ float
Provide Matrix[r, c] syntax for accessing individual values. The row and column parameters start at zero,
which is consistent with most python libraries, but is counter to gp_GTrsf(), which is 1-indexed.

Parameters
rc (Tuple[int, int]) –

Return type
float

116 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

__init__()→ None
__init__(matrix: Union[gp_GTrsf, gp_Trsf])→ None
__init__(matrix: Sequence[Sequence[float]])→ None

__repr__()→ str
Generate a valid python expression representing this Matrix

Return type
str

__weakref__

list of weak references to the object (if defined)

transposed_list()→ Sequence[float]
Needed by the cqparts gltf exporter

Return type
Sequence[float]

class cadquery.NearestToPointSelector(pnt)
Bases: Selector

Selects object nearest the provided point.

If the object is a vertex or point, the distance is used. For other kinds of shapes, the center of mass is used to to
compute which is closest.

Applicability: All Types of Shapes

Example:

CQ(aCube).vertices(NearestToPointSelector((0, 1, 0)))

returns the vertex of the unit cube closest to the point x=0,y=1,z=0

__init__(pnt)

filter(objectList: Sequence[Shape])
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

class cadquery.ParallelDirSelector(vector: Vector, tolerance: float = 0.0001)
Bases: BaseDirSelector

Selects objects parallel with the provided direction.

Applicability:
Linear Edges Planar Faces

Use the string syntax shortcut |(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(ParallelDirSelector((0, 0, 1)))

3.12. CadQuery Class Summary 117

CadQuery Documentation, Release 2.4.0

selects faces with the normal parallel to the z direction, and is equivalent to:

CQ(aCube).faces("|Z")

Parameters

• vector (Vector) –

• tolerance (float) –

test(vec: Vector)→ bool
Test a specified vector. Subclasses override to provide other implementations

Parameters
vec (Vector) –

Return type
bool

class cadquery.PerpendicularDirSelector(vector: Vector, tolerance: float = 0.0001)
Bases: BaseDirSelector

Selects objects perpendicular with the provided direction.

Applicability:
Linear Edges Planar Faces

Use the string syntax shortcut #(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(PerpendicularDirSelector((0, 0, 1)))

selects faces with the normal perpendicular to the z direction, and is equivalent to:

CQ(aCube).faces("#Z")

Parameters

• vector (Vector) –

• tolerance (float) –

test(vec: Vector)→ bool
Test a specified vector. Subclasses override to provide other implementations

Parameters
vec (Vector) –

Return type
bool

class cadquery.Plane(origin: Union[Tuple[float, float, float], Vector], xDir: Optional[Union[Tuple[float, float,
float], Vector]] = None, normal: Union[Tuple[float, float, float], Vector] = (0, 0, 1))

Bases: object

A 2D coordinate system in space

A 2D coordinate system in space, with the x-y axes on the plane, and a particular point as the origin.

118 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

A plane allows the use of 2D coordinates, which are later converted to global, 3d coordinates when the operations
are complete.

Frequently, it is not necessary to create work planes, as they can be created automatically from faces.

Parameters

• origin (Union[Tuple[float, float, float], Vector]) –

• xDir (Vector) –

• normal (Union[Tuple[float, float, float], Vector]) –

__eq__(other)
Return self==value.

__hash__ = None

__init__(origin: Union[Tuple[float, float, float], Vector], xDir: Optional[Union[Tuple[float, float, float],
Vector]] = None, normal: Union[Tuple[float, float, float], Vector] = (0, 0, 1))

Create a Plane with an arbitrary orientation

Parameters

• origin (Union[Tuple[float, float, float], Vector]) – the origin in global co-
ordinates

• xDir (Optional[Union[Tuple[float, float, float], Vector]]) – an optional
vector representing the xDirection.

• normal (Union[Tuple[float, float, float], Vector]) – the normal direction
for the plane

Raises
ValueError – if the specified xDir is not orthogonal to the provided normal

__ne__(other)
Return self!=value.

__repr__()

Return repr(self).

__weakref__

list of weak references to the object (if defined)

classmethod named(stdName: str, origin=(0, 0, 0))→ Plane
Create a predefined Plane based on the conventional names.

Parameters

• stdName (string) – one of (XY|YZ|ZX|XZ|YX|ZY|front|back|left|right|top|bottom)

• origin (3-tuple of the origin of the new plane, in global
coordinates.) – the desired origin, specified in global coordinates

Return type
Plane

Available named planes are as follows. Direction references refer to the global directions.

3.12. CadQuery Class Summary 119

CadQuery Documentation, Release 2.4.0

Name xDir yDir zDir
XY +x +y +z
YZ +y +z +x
ZX +z +x +y
XZ +x +z -y
YX +y +x -z
ZY +z +y -x
front +x +y +z
back -x +y -z
left +z +y -x
right -z +y +x
top +x -z +y
bottom +x +z -y

rotated(rotate=(0, 0, 0))
Returns a copy of this plane, rotated about the specified axes

Since the z axis is always normal the plane, rotating around Z will always produce a plane that is parallel
to this one.

The origin of the workplane is unaffected by the rotation.

Rotations are done in order x, y, z. If you need a different order, manually chain together multiple rotate()
commands.

Parameters
rotate – Vector [xDegrees, yDegrees, zDegrees]

Returns
a copy of this plane rotated as requested.

setOrigin2d(x, y)
Set a new origin in the plane itself

Set a new origin in the plane itself. The plane’s orientation and xDrection are unaffected.

Parameters

• x (float) – offset in the x direction

• y (float) – offset in the y direction

Returns
void

The new coordinates are specified in terms of the current 2D system. As an example:

p = Plane.XY() p.setOrigin2d(2, 2) p.setOrigin2d(2, 2)

results in a plane with its origin at (x, y) = (4, 4) in global coordinates. Both operations were relative to
local coordinates of the plane.

toLocalCoords(obj)
Project the provided coordinates onto this plane

Parameters
obj – an object or vector to convert

Returns
an object of the same type, but converted to local coordinates

120 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Most of the time, the z-coordinate returned will be zero, because most operations based on a plane are all
2D. Occasionally, though, 3D points outside of the current plane are transformed. One such example is
Workplane.box(), where 3D corners of a box are transformed to orient the box in space correctly.

toWorldCoords(tuplePoint)→ Vector
Convert a point in local coordinates to global coordinates

Parameters
tuplePoint (a 2 or three tuple of float. The third value is taken to be
zero if not supplied.) – point in local coordinates to convert.

Returns
a Vector in global coordinates

Return type
Vector

class cadquery.Selector

Bases: object

Filters a list of objects.

Filters must provide a single method that filters objects.

__weakref__

list of weak references to the object (if defined)

filter(objectList: Sequence[Shape])→ List[Shape]
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

Return type
List[Shape]

class cadquery.Shape(obj: TopoDS_Shape)
Bases: object

Represents a shape in the system. Wraps TopoDS_Shape.

Parameters
obj (TopoDS_Shape) –

Area()→ float

Returns
The surface area of all faces in this Shape

Return type
float

BoundingBox(tolerance: Optional[float] = None)→ BoundBox
Create a bounding box for this Shape.

Parameters
tolerance (Optional[float]) – Tolerance value passed to BoundBox

3.12. CadQuery Class Summary 121

CadQuery Documentation, Release 2.4.0

Returns
A BoundBox object for this Shape

Return type
BoundBox

Center()→ Vector

Returns
The point of the center of mass of this Shape

Return type
Vector

CenterOfBoundBox(tolerance: Optional[float] = None)→ Vector

Parameters
tolerance (Optional[float]) – Tolerance passed to the BoundingBox() method

Returns
Center of the bounding box of this shape

Return type
Vector

Closed()→ bool

Returns
The closedness flag

Return type
bool

static CombinedCenter(objects: Iterable[Shape])→ Vector
Calculates the center of mass of multiple objects.

Parameters
objects (Iterable[Shape]) – A list of objects with mass

Return type
Vector

static CombinedCenterOfBoundBox(objects: List[Shape])→ Vector
Calculates the center of a bounding box of multiple objects.

Parameters
objects (List[Shape]) – A list of objects

Return type
Vector

CompSolids()→ List[CompSolid]

Returns
All the compsolids in this Shape

Return type
List[CompSolid]

Compounds()→ List[Compound]

Returns
All the compounds in this Shape

122 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Return type
List[Compound]

Edges()→ List[Edge]

Returns
All the edges in this Shape

Return type
List[Edge]

Faces()→ List[Face]

Returns
All the faces in this Shape

Return type
List[Face]

Shells()→ List[Shell]

Returns
All the shells in this Shape

Return type
List[Shell]

Solids()→ List[Solid]

Returns
All the solids in this Shape

Return type
List[Solid]

Vertices()→ List[Vertex]

Returns
All the vertices in this Shape

Return type
List[Vertex]

Volume()→ float

Returns
The volume of this Shape

Return type
float

Wires()→ List[Wire]

Returns
All the wires in this Shape

Return type
List[Wire]

__eq__(other)→ bool
Return self==value.

Return type
bool

3.12. CadQuery Class Summary 123

CadQuery Documentation, Release 2.4.0

__hash__()→ int
Return hash(self).

Return type
int

__init__(obj: TopoDS_Shape)

Parameters
obj (TopoDS_Shape) –

__iter__()→ Iterator[Shape]
Iterate over subshapes.

Return type
Iterator[Shape]

__weakref__

list of weak references to the object (if defined)

ancestors(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid',
'Compound'])→ Compound

Iterate over ancestors, i.e. shapes of same kind within shape that contain self.

Parameters

• shape (Shape) –

• kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid',
'CompSolid', 'Compound']) –

Return type
Compound

classmethod cast(obj: TopoDS_Shape, forConstruction: bool = False)→ Shape
Returns the right type of wrapper, given a OCCT object

Parameters

• obj (TopoDS_Shape) –

• forConstruction (bool) –

Return type
Shape

static centerOfMass(obj: Shape)→ Vector
Calculates the center of ‘mass’ of an object.

Parameters
obj (Shape) – Compute the center of mass of this object

Return type
Vector

clean()→ T
Experimental clean using ShapeUpgrade

Parameters
self (T) –

Return type
T

124 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

static computeMass(obj: Shape)→ float
Calculates the ‘mass’ of an object.

Parameters
obj (Shape) – Compute the mass of this object

Return type
float

copy(mesh: bool = False)→ T
Creates a new object that is a copy of this object.

Parameters

• self (T) –

• mesh (bool) – should I copy the triangulation too (default: False)

Returns
a copy of the object

Return type
T

cut(*toCut: Shape, tol: Optional[float] = None)→ Shape
Remove the positional arguments from this Shape.

Parameters

• tol (Optional[float]) – Fuzzy mode tolerance

• toCut (Shape) –

Return type
Shape

distance(other: Shape)→ float
Minimal distance between two shapes

Parameters
other (Shape) –

Return type
float

distances(*others: Shape)→ Iterator[float]
Minimal distances to between self and other shapes

Parameters
others (Shape) –

Return type
Iterator[float]

edges(selector: Optional[Union[Selector, str]] = None)→ Shape
Select edges.

Parameters
selector (Optional[Union[Selector, str]]) –

Return type
Shape

3.12. CadQuery Class Summary 125

CadQuery Documentation, Release 2.4.0

exportBrep(f: Union[str, BytesIO])→ bool
Export this shape to a BREP file

Parameters
f (Union[str, BytesIO]) –

Return type
bool

exportStep(fileName: str, **kwargs)→ IFSelect_ReturnStatus
Export this shape to a STEP file.

kwargs is used to provide optional keyword arguments to configure the exporter.

Parameters

• fileName (str) – Path and filename for writing.

• write_pcurves (bool) – Enable or disable writing parametric curves to the STEP file.
Default True.

If False, writes STEP file without pcurves. This decreases the size of the resulting STEP
file.

• precision_mode (int) – Controls the uncertainty value for STEP entities. Specify -1, 0,
or 1. Default 0. See OCCT documentation.

Return type
IFSelect_ReturnStatus

exportStl(fileName: str, tolerance: float = 0.001, angularTolerance: float = 0.1, ascii: bool = False,
relative: bool = True, parallel: bool = True)→ bool

Exports a shape to a specified STL file.

Parameters

• fileName (str) – The path and file name to write the STL output to.

• tolerance (float) – A linear deflection setting which limits the distance between a curve
and its tessellation. Setting this value too low will result in large meshes that can consume
computing resources. Setting the value too high can result in meshes with a level of detail
that is too low. Default is 1e-3, which is a good starting point for a range of cases.

• angularTolerance (float) – Angular deflection setting which limits the angle between
subsequent segments in a polyline. Default is 0.1.

• ascii (bool) – Export the file as ASCII (True) or binary (False) STL format. Default is
binary.

• relative (bool) – If True, tolerance will be scaled by the size of the edge being meshed.
Default is True. Setting this value to True may cause large features to become faceted, or
small features dense.

• parallel (bool) – If True, OCCT will use parallel processing to mesh the shape. Default
is True.

Return type
bool

faces(selector: Optional[Union[Selector, str]] = None)→ Shape
Select faces.

126 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Parameters
selector (Optional[Union[Selector, str]]) –

Return type
Shape

facesIntersectedByLine(point: Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]], axis:
Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int,
float], Union[int, float], Union[int, float]]], tol: float = 0.0001, direction:
Optional[Literal['AlongAxis', 'Opposite']] = None)

Computes the intersections between the provided line and the faces of this Shape

Parameters

• point (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
Base point for defining a line

• axis (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
Axis on which the line rests

• tol (float) – Intersection tolerance

• direction (Optional[Literal['AlongAxis', 'Opposite']]) – Valid values: “Alon-
gAxis”, “Opposite”; If specified, will ignore all faces that are not in the specified direction
including the face where the point lies if it is the case

Returns
A list of intersected faces sorted by distance from point

fix()→ T
Try to fix shape if not valid

Parameters
self (T) –

Return type
T

fuse(*toFuse: Shape, glue: bool = False, tol: Optional[float] = None)→ Shape
Fuse the positional arguments with this Shape.

Parameters

• glue (bool) – Sets the glue option for the algorithm, which allows increasing performance
of the intersection of the input shapes

• tol (Optional[float]) – Fuzzy mode tolerance

• toFuse (Shape) –

Return type
Shape

geomType()→ Literal['Vertex', 'Wire', 'Shell', 'Solid', 'Compound', 'PLANE', 'CYLINDER', 'CONE',
'SPHERE', 'TORUS', 'BEZIER', 'BSPLINE', 'REVOLUTION', 'EXTRUSION', 'OFFSET',
'OTHER', 'LINE', 'CIRCLE', 'ELLIPSE', 'HYPERBOLA', 'PARABOLA']

Gets the underlying geometry type.

3.12. CadQuery Class Summary 127

CadQuery Documentation, Release 2.4.0

Implementations can return any values desired, but the values the user uses in type filters should correspond
to these.

As an example, if a user does:

CQ(object).faces("%mytype")

The expectation is that the geomType attribute will return ‘mytype’

The return values depend on the type of the shape:

Vertex: always ‘Vertex’
Edge: LINE, CIRCLE, ELLIPSE, HYPERBOLA, PARABOLA, BEZIER,

BSPLINE, OFFSET, OTHER
Face: PLANE, CYLINDER, CONE, SPHERE, TORUS, BEZIER, BSPLINE,

REVOLUTION, EXTRUSION, OFFSET, OTHER
Solid: ‘Solid’
Shell: ‘Shell’
Compound: ‘Compound’
Wire: ‘Wire’

Returns
A string according to the geometry type

Return type
Literal[‘Vertex’, ‘Wire’, ‘Shell’, ‘Solid’, ‘Compound’, ‘PLANE’, ‘CYLINDER’, ‘CONE’,
‘SPHERE’, ‘TORUS’, ‘BEZIER’, ‘BSPLINE’, ‘REVOLUTION’, ‘EXTRUSION’, ‘OFF-
SET’, ‘OTHER’, ‘LINE’, ‘CIRCLE’, ‘ELLIPSE’, ‘HYPERBOLA’, ‘PARABOLA’]

hashCode()→ int
Returns a hashed value denoting this shape. It is computed from the TShape and the Location. The Orien-
tation is not used.

Return type
int

classmethod importBrep(f: Union[str, BytesIO])→ Shape
Import shape from a BREP file

Parameters
f (Union[str, BytesIO]) –

Return type
Shape

intersect(*toIntersect: Shape, tol: Optional[float] = None)→ Shape
Intersection of the positional arguments and this Shape.

Parameters

• tol (Optional[float]) – Fuzzy mode tolerance

• toIntersect (Shape) –

Return type
Shape

128 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

isEqual(other: Shape)→ bool
Returns True if two shapes are equal, i.e. if they share the same TShape with the same Locations and
Orientations. Also see isSame().

Parameters
other (Shape) –

Return type
bool

isNull()→ bool
Returns true if this shape is null. In other words, it references no underlying shape with the potential to be
given a location and an orientation.

Return type
bool

isSame(other: Shape)→ bool
Returns True if other and this shape are same, i.e. if they share the same TShape with the same Locations.
Orientations may differ. Also see isEqual()

Parameters
other (Shape) –

Return type
bool

isValid()→ bool
Returns True if no defect is detected on the shape S or any of its subshapes. See the OCCT docs on
BRepCheck_Analyzer::IsValid for a full description of what is checked.

Return type
bool

locate(loc: Location)→ T
Apply a location in absolute sense to self

Parameters

• self (T) –

• loc (Location) –

Return type
T

located(loc: Location)→ T
Apply a location in absolute sense to a copy of self

Parameters

• self (T) –

• loc (Location) –

Return type
T

location()→ Location
Return the current location

Return type
Location

3.12. CadQuery Class Summary 129

CadQuery Documentation, Release 2.4.0

static matrixOfInertia(obj: Shape)→ List[List[float]]
Calculates the matrix of inertia of an object. :param obj: Compute the matrix of inertia of this object

Parameters
obj (Shape) –

Return type
List[List[float]]

mesh(tolerance: float, angularTolerance: float = 0.1)
Generate triangulation if none exists.

Parameters

• tolerance (float) –

• angularTolerance (float) –

mirror(mirrorPlane: Union[Literal['XY', 'YX', 'XZ', 'ZX', 'YZ', 'ZY'], Vector, Tuple[Union[int, float],
Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]] = 'XY',
basePointVector: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]] = (0, 0, 0))→ Shape

Applies a mirror transform to this Shape. Does not duplicate objects about the plane.

Parameters

• mirrorPlane (Union[Literal['XY', 'YX', 'XZ', 'ZX', 'YZ', 'ZY'], Vector,
Tuple[Union[int, float], Union[int, float]], Tuple[Union[int,
float], Union[int, float], Union[int, float]]]) – The direction of the
plane to mirror about - one of ‘XY’, ‘XZ’ or ‘YZ’

• basePointVector (Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int,
float]]]) – The origin of the plane to mirror about

Returns
The mirrored shape

Return type
Shape

move(loc: Location)→ T
Apply a location in relative sense (i.e. update current location) to self

Parameters

• self (T) –

• loc (Location) –

Return type
T

moved(loc: Location)→ T
Apply a location in relative sense (i.e. update current location) to a copy of self

Parameters

• self (T) –

• loc (Location) –

Return type
T

130 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

rotate(startVector: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]], endVector: Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], angleDegrees: float)→ T

Rotates a shape around an axis.

Parameters

• self (T) –

• startVector (either a 3-tuple or a Vector) – start point of rotation axis

• endVector (either a 3-tuple or a Vector) – end point of rotation axis

• angleDegrees (float) – angle to rotate, in degrees

Returns
a copy of the shape, rotated

Return type
T

scale(factor: float)→ Shape
Scales this shape through a transformation.

Parameters
factor (float) –

Return type
Shape

shells(selector: Optional[Union[Selector, str]] = None)→ Shape
Select shells.

Parameters
selector (Optional[Union[Selector, str]]) –

Return type
Shape

siblings(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid',
'Compound'], level: int = 1)→ Compound

Iterate over siblings, i.e. shapes within shape that share subshapes of kind with self.

Parameters

• shape (Shape) –

• kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid',
'CompSolid', 'Compound']) –

• level (int) –

Return type
Compound

solids(selector: Optional[Union[Selector, str]] = None)→ Shape
Select solids.

Parameters
selector (Optional[Union[Selector, str]]) –

Return type
Shape

3.12. CadQuery Class Summary 131

CadQuery Documentation, Release 2.4.0

split(*splitters: Shape)→ Shape
Split this shape with the positional arguments.

Parameters
splitters (Shape) –

Return type
Shape

toSplines(degree: int = 3, tolerance: float = 0.001, nurbs: bool = False)→ T
Approximate shape with b-splines of the specified degree.

Parameters

• self (T) –

• degree (int) – Maximum degree.

• tolerance (float) – Approximation tolerance.

• nurbs (bool) – Use rational splines.

Return type
T

toVtkPolyData(tolerance: Optional[float] = None, angularTolerance: Optional[float] = None, normals:
bool = False)→ vtkPolyData

Convert shape to vtkPolyData

Parameters

• tolerance (Optional[float]) –

• angularTolerance (Optional[float]) –

• normals (bool) –

Return type
vtkPolyData

transformGeometry(tMatrix: Matrix)→ Shape
Transforms this shape by tMatrix.

WARNING: transformGeometry will sometimes convert lines and circles to splines, but it also has the
ability to handle skew and stretching transformations.

If your transformation is only translation and rotation, it is safer to use transformShape(), which doesn’t
change the underlying type of the geometry, but cannot handle skew transformations.

Parameters
tMatrix (Matrix) – The transformation matrix

Returns
a copy of the object, but with geometry transformed instead of just rotated.

Return type
Shape

transformShape(tMatrix: Matrix)→ Shape
Transforms this Shape by tMatrix. Also see transformGeometry().

Parameters
tMatrix (Matrix) – The transformation matrix

132 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Returns
a copy of the object, transformed by the provided matrix, with all objects keeping their type

Return type
Shape

translate(vector: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]])→ T

Translates this shape through a transformation.

Parameters

• self (T) –

• vector (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

Return type
T

vertices(selector: Optional[Union[Selector, str]] = None)→ Shape
Select vertices.

Parameters
selector (Optional[Union[Selector, str]]) –

Return type
Shape

wires(selector: Optional[Union[Selector, str]] = None)→ Shape
Select wires.

Parameters
selector (Optional[Union[Selector, str]]) –

Return type
Shape

class cadquery.Shell(obj: TopoDS_Shape)
Bases: Shape

the outer boundary of a surface

Parameters
obj (TopoDS_Shape) –

classmethod makeShell(listOfFaces: Iterable[Face])→ Shell
Makes a shell from faces.

Parameters
listOfFaces (Iterable[Face]) –

Return type
Shell

class cadquery.Sketch(parent: ~typing.Any = None, locs:
~typing.Iterable[~cadquery.occ_impl.geom.Location] =
(<cadquery.occ_impl.geom.Location object>,))

Bases: object

2D sketch. Supports faces, edges and edges with constraints based construction.

Parameters

3.12. CadQuery Class Summary 133

CadQuery Documentation, Release 2.4.0

• parent (Any) –

• locs (List[Location]) –

__init__(parent: ~typing.Any = None, locs: ~typing.Iterable[~cadquery.occ_impl.geom.Location] =
(<cadquery.occ_impl.geom.Location object>,))

Construct an empty sketch.

Parameters

• self (T) –

• parent (Any) –

• locs (Iterable[Location]) –

__iter__()→ Iterator[Face]
Iterate over faces-locations combinations.

Return type
Iterator[Face]

__weakref__

list of weak references to the object (if defined)

arc(c: Union[Vector, Tuple[Union[int, float], Union[int, float]]], r: Union[int, float], a: Union[int, float], da:
Union[int, float], tag: Optional[str] = None, forConstruction: bool = False)→ T

arc(p1: Union[Vector, Tuple[Union[int, float], Union[int, float]]], p2: Union[Vector, Tuple[Union[int, float],
Union[int, float]]], p3: Union[Vector, Tuple[Union[int, float], Union[int, float]]], tag: Optional[str] =
None, forConstruction: bool = False)→ T

arc(p2: Union[Vector, Tuple[Union[int, float], Union[int, float]]], p3: Union[Vector, Tuple[Union[int, float],
Union[int, float]]], tag: Optional[str] = None, forConstruction: bool = False)→ T
Construct an arc.

Parameters

• self (T) –

• p1 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) –

• p2 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) –

• p3 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) –

• tag (Optional[str]) –

• forConstruction (bool) –

Return type
T

assemble(mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None)→ T
Assemble edges into faces.

Parameters

• self (T) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

134 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

chamfer(d: Union[int, float])→ T
Add a chamfer based on current selection.

Parameters

• self (T) –

• d (Union[int, float]) –

Return type
T

circle(r: Union[int, float], mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None)→ T
Construct a circular face.

Parameters

• self (T) –

• r (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

clean()→ T
Remove internal wires.

Parameters
self (T) –

Return type
T

close(tag: Optional[str] = None)→ T
Connect last edge to the first one.

Parameters

• self (T) –

• tag (Optional[str]) –

Return type
T

constrain(tag1: str, tag2: str, constraint: Literal['Fixed', 'FixedPoint', 'Coincident', 'Angle', 'Length',
'Distance', 'Radius', 'Orientation', 'ArcAngle'], arg: Any)→ T

constrain(tag: str, constraint: Literal['Fixed', 'FixedPoint', 'Coincident', 'Angle', 'Length', 'Distance',
'Radius', 'Orientation', 'ArcAngle'], arg: Any)→ T

Add a constraint.

Parameters

• self (T) –

• tag (str) –

• constraint (Literal['Fixed', 'FixedPoint', 'Coincident', 'Angle', 'Length',
'Distance', 'Radius', 'Orientation', 'ArcAngle']) –

• arg (Any) –

3.12. CadQuery Class Summary 135

CadQuery Documentation, Release 2.4.0

Return type
T

copy()→ T
Create a partial copy of the sketch.

Parameters
self (T) –

Return type
T

delete()→ T
Delete selected object.

Parameters
self (T) –

Return type
T

distribute(n: int, start: Union[int, float] = 0, stop: Union[int, float] = 1, rotate: bool = True)→ T
Distribute locations along selected edges or wires.

Parameters

• self (T) –

• n (int) –

• start (Union[int, float]) –

• stop (Union[int, float]) –

• rotate (bool) –

Return type
T

each(callback: Callable[[Location], Union[Face, Sketch, Compound]], mode: Literal['a', 's', 'i', 'c'] = 'a',
tag: Optional[str] = None, ignore_selection: bool = False)→ T

Apply a callback on all applicable entities.

Parameters

• self (T) –

• callback (Callable[[Location], Union[Face, Sketch, Compound]]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

• ignore_selection (bool) –

Return type
T

edge(val: Edge, tag: Optional[str] = None, forConstruction: bool = False)→ T
Add an edge to the sketch.

Parameters

• self (T) –

• val (Edge) –

136 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• tag (Optional[str]) –

• forConstruction (bool) –

Return type
T

edges(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select edges.

Parameters

• self (T) –

• s (Optional[Union[str, Selector]]) –

• tag (Optional[str]) –

Return type
T

ellipse(a1: Union[int, float], a2: Union[int, float], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c']
= 'a', tag: Optional[str] = None)→ T

Construct an elliptical face.

Parameters

• self (T) –

• a1 (Union[int, float]) –

• a2 (Union[int, float]) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

face(b: Union[Wire, Iterable[Edge], Compound, T], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i',
'c'] = 'a', tag: Optional[str] = None, ignore_selection: bool = False)→ T

Construct a face from a wire or edges.

Parameters

• self (T) –

• b (Union[Wire, Iterable[Edge], Compound, T]) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

• ignore_selection (bool) –

Return type
T

faces(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select faces.

Parameters

3.12. CadQuery Class Summary 137

CadQuery Documentation, Release 2.4.0

• self (T) –

• s (Optional[Union[str, Selector]]) –

• tag (Optional[str]) –

Return type
T

fillet(d: Union[int, float])→ T
Add a fillet based on current selection.

Parameters

• self (T) –

• d (Union[int, float]) –

Return type
T

finalize()→ Any
Finish sketch construction and return the parent.

Return type
Any

hull(mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None)→ T
Generate a convex hull from current selection or all objects.

Parameters

• self (T) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

importDXF(filename: str, tol: float = 1e-06, exclude: List[str] = [], include: List[str] = [], angle: Union[int,
float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None)→ T

Import a DXF file and construct face(s)

Parameters

• self (T) –

• filename (str) –

• tol (float) –

• exclude (List[str]) –

• include (List[str]) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

138 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

located(loc: Location)→ T
Create a partial copy of the sketch with a new location.

Parameters

• self (T) –

• loc (Location) –

Return type
T

moved(loc: Location)→ T
Create a partial copy of the sketch with moved _faces.

Parameters

• self (T) –

• loc (Location) –

Return type
T

offset(d: Union[int, float], mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None)→ T
Offset selected wires or edges.

Parameters

• self (T) –

• d (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

parray(r: Union[int, float], a1: Union[int, float], da: Union[int, float], n: int, rotate: bool = True)→ T
Generate a polar array of locations.

Parameters

• self (T) –

• r (Union[int, float]) –

• a1 (Union[int, float]) –

• da (Union[int, float]) –

• n (int) –

• rotate (bool) –

Return type
T

polygon(pts: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]], angle: Union[int, float] =
0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None)→ T

Construct a polygonal face.

Parameters

• self (T) –

3.12. CadQuery Class Summary 139

CadQuery Documentation, Release 2.4.0

• pts (Iterable[Union[Vector, Tuple[Union[int, float], Union[int,
float]]]]) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

push(locs: Iterable[Union[Location, Vector, Tuple[Union[int, float], Union[int, float]]]], tag: Optional[str]
= None)→ T

Set current selection to given locations or points.

Parameters

• self (T) –

• locs (Iterable[Union[Location, Vector, Tuple[Union[int, float],
Union[int, float]]]]) –

• tag (Optional[str]) –

Return type
T

rarray(xs: Union[int, float], ys: Union[int, float], nx: int, ny: int)→ T
Generate a rectangular array of locations.

Parameters

• self (T) –

• xs (Union[int, float]) –

• ys (Union[int, float]) –

• nx (int) –

• ny (int) –

Return type
T

rect(w: Union[int, float], h: Union[int, float], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a',
tag: Optional[str] = None)→ T

Construct a rectangular face.

Parameters

• self (T) –

• w (Union[int, float]) –

• h (Union[int, float]) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

140 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

regularPolygon(r: Union[int, float], n: int, angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a',
tag: Optional[str] = None)→ T

Construct a regular polygonal face.

Parameters

• self (T) –

• r (Union[int, float]) –

• n (int) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

reset()→ T
Reset current selection.

Parameters
self (T) –

Return type
T

segment(p1: Union[Vector, Tuple[Union[int, float], Union[int, float]]], p2: Union[Vector, Tuple[Union[int,
float], Union[int, float]]], tag: Optional[str] = None, forConstruction: bool = False)→ T

segment(l: Union[int, float], a: Union[int, float], tag: Optional[str] = None, forConstruction: bool = False)
→ T

segment(p2: Union[Vector, Tuple[Union[int, float], Union[int, float]]], tag: Optional[str] = None,
forConstruction: bool = False)→ T

Construct a segment.

Parameters

• self (T) –

• p1 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) –

• p2 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) –

• tag (Optional[str]) –

• forConstruction (bool) –

Return type
T

select(*tags: str)→ T
Select based on tags.

Parameters

• self (T) –

• tags (str) –

Return type
T

3.12. CadQuery Class Summary 141

CadQuery Documentation, Release 2.4.0

slot(w: Union[int, float], h: Union[int, float], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a',
tag: Optional[str] = None)→ T

Construct a slot-shaped face.

Parameters

• self (T) –

• w (Union[int, float]) –

• h (Union[int, float]) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

solve()→ T
Solve current constraints and update edge positions.

Parameters
self (T) –

Return type
T

spline(pts: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]], tangents:
Optional[Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]]], periodic: bool, tag:
Optional[str] = None, forConstruction: bool = False)→ T

spline(pts: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]], tag: Optional[str] = None,
forConstruction: bool = False)→ T

Construct a spline edge.

Parameters

• self (T) –

• pts (Iterable[Union[Vector, Tuple[Union[int, float], Union[int,
float]]]]) –

• tangents (Optional[Iterable[Union[Vector, Tuple[Union[int, float],
Union[int, float]]]]]) –

• periodic (bool) –

• tag (Optional[str]) –

• forConstruction (bool) –

Return type
T

tag(tag: str)→ T
Tag current selection.

Parameters

• self (T) –

• tag (str) –

142 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Return type
T

trapezoid(w: Union[int, float], h: Union[int, float], a1: Union[int, float], a2: Optional[float] = None,
angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None)→ T

Construct a trapezoidal face.

Parameters

• self (T) –

• w (Union[int, float]) –

• h (Union[int, float]) –

• a1 (Union[int, float]) –

• a2 (Optional[float]) –

• angle (Union[int, float]) –

• mode (Literal['a', 's', 'i', 'c']) –

• tag (Optional[str]) –

Return type
T

val()→ Union[Shape, Location]
Return the first selected item or Location().

Parameters
self (T) –

Return type
Union[Shape, Location]

vals()→ List[Union[Shape, Location]]
Return the list of selected items.

Parameters
self (T) –

Return type
List[Union[Shape, Location]]

vertices(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select vertices.

Parameters

• self (T) –

• s (Optional[Union[str, Selector]]) –

• tag (Optional[str]) –

Return type
T

wires(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select wires.

Parameters

• self (T) –

3.12. CadQuery Class Summary 143

CadQuery Documentation, Release 2.4.0

• s (Optional[Union[str, Selector]]) –

• tag (Optional[str]) –

Return type
T

class cadquery.Solid(obj: TopoDS_Shape)
Bases: Shape, Mixin3D

a single solid

Parameters
obj (TopoDS_Shape) –

classmethod extrudeLinear(face: Face, vecNormal: Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], taper:
Union[float, int] = 0)→ Solid

classmethod extrudeLinear(outerWire: Wire, innerWires: List[Wire], vecNormal: Union[Vector,
Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]], taper: Union[float, int] = 0)→ Solid

Attempt to extrude the list of wires into a prismatic solid in the provided direction

Parameters

• outerWire (Wire) – the outermost wire

• innerWires (List[Wire]) – a list of inner wires

• vecNormal (Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int,
float]]]) – a vector along which to extrude the wires

• taper (Union[float, int]) – taper angle, default=0

Returns
a Solid object

Return type
Solid

The wires must not intersect

Extruding wires is very non-trivial. Nested wires imply very different geometry, and there are many ge-
ometries that are invalid. In general, the following conditions must be met:

• all wires must be closed

• there cannot be any intersecting or self-intersecting wires

• wires must be listed from outside in

• more than one levels of nesting is not supported reliably

This method will attempt to sort the wires, but there is much work remaining to make this method reliable.

classmethod extrudeLinearWithRotation(outerWire: Wire, innerWires: List[Wire], vecCenter:
Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]],
vecNormal: Union[Vector, Tuple[Union[int, float],
Union[int, float]], Tuple[Union[int, float], Union[int, float],
Union[int, float]]], angleDegrees: Union[float, int])→
Solid

144 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

classmethod extrudeLinearWithRotation(face: Face, vecCenter: Union[Vector, Tuple[Union[int,
float], Union[int, float]], Tuple[Union[int, float], Union[int,
float], Union[int, float]]], vecNormal: Union[Vector,
Tuple[Union[int, float], Union[int, float]], Tuple[Union[int,
float], Union[int, float], Union[int, float]]], angleDegrees:
Union[float, int])→ Solid

Creates a ‘twisted prism’ by extruding, while simultaneously rotating around the extrusion vector.

Though the signature may appear to be similar enough to extrudeLinear to merit combining them, the
construction methods used here are different enough that they should be separate.

At a high level, the steps followed are:

(1) accept a set of wires

(2) create another set of wires like this one, but which are transformed and rotated

(3) create a ruledSurface between the sets of wires

(4) create a shell and compute the resulting object

Parameters

• outerWire (Wire) – the outermost wire

• innerWires (List[Wire]) – a list of inner wires

• vecCenter (Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int,
float]]]) – the center point about which to rotate. the axis of rotation is defined by
vecNormal, located at vecCenter.

• vecNormal (Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int,
float]]]) – a vector along which to extrude the wires

• angleDegrees (Union[float, int]) – the angle to rotate through while extruding

Returns
a Solid object

Return type
Solid

classmethod interpPlate(surf_edges, surf_pts, thickness, degree=3, nbPtsOnCur=15, nbIter=2,
anisotropy=False, tol2d=1e-05, tol3d=0.0001, tolAng=0.01, tolCurv=0.1,
maxDeg=8, maxSegments=9)→ Union[Solid, Face]

Returns a plate surface that is ‘thickness’ thick, enclosed by ‘surf_edge_pts’ points, and going through
‘surf_pts’ points.

Parameters

• surf_edges – list of [x,y,z] float ordered coordinates or list of ordered or unordered wires

• surf_pts – list of [x,y,z] float coordinates (uses only edges if [])

• thickness – thickness may be negative or positive depending on direction, (returns 2D
surface if 0)

• degree – >=2

• nbPtsOnCur – number of points on curve >= 15

3.12. CadQuery Class Summary 145

CadQuery Documentation, Release 2.4.0

• nbIter – number of iterations >= 2

• anisotropy – bool Anisotropy

• tol2d – 2D tolerance >0

• tol3d – 3D tolerance >0

• tolAng – angular tolerance

• tolCurv – tolerance for curvature >0

• maxDeg – highest polynomial degree >= 2

• maxSegments – greatest number of segments >= 2

Return type
Union[Solid, Face]

static isSolid(obj: Shape)→ bool
Returns true if the object is a solid, false otherwise

Parameters
obj (Shape) –

Return type
bool

classmethod makeBox(length,width,height,[pnt,dir]) -- Make a box located in pnt with the dimensions
(length,width,height)

By default pnt=Vector(0,0,0) and dir=Vector(0,0,1)

Parameters

• length (float) –

• width (float) –

• height (float) –

• pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

Return type
Solid

classmethod makeCone(radius1: float, radius2: float, height: float, pnt:
~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int,
float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float],
~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir:
~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int,
float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float],
~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0),
angleDegrees: float = 360)→ Solid

Make a cone with given radii and height By default pnt=Vector(0,0,0), dir=Vector(0,0,1) and angle=360

Parameters

• radius1 (float) –

• radius2 (float) –

146 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• height (float) –

• pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• angleDegrees (float) –

Return type
Solid

classmethod makeCylinder(radius: float, height: float, pnt:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angleDegrees: float =
360)→ Solid

makeCylinder(radius,height,[pnt,dir,angle]) – Make a cylinder with a given radius and height By default
pnt=Vector(0,0,0),dir=Vector(0,0,1) and angle=360

Parameters

• radius (float) –

• height (float) –

• pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• angleDegrees (float) –

Return type
Solid

classmethod makeLoft(listOfWire: List[Wire], ruled: bool = False)→ Solid
makes a loft from a list of wires The wires will be converted into faces when possible– it is presumed that
nobody ever actually wants to make an infinitely thin shell for a real FreeCADPart.

Parameters

• listOfWire (List[Wire]) –

• ruled (bool) –

Return type
Solid

classmethod makeSolid(shell: Shell)→ Solid
Makes a solid from a single shell.

Parameters
shell (Shell) –

3.12. CadQuery Class Summary 147

CadQuery Documentation, Release 2.4.0

Return type
Solid

classmethod makeSphere(radius: float, pnt: ~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angleDegrees1: float = 0,
angleDegrees2: float = 90, angleDegrees3: float = 360)→ Shape

Make a sphere with a given radius By default pnt=Vector(0,0,0), dir=Vector(0,0,1), angle1=0, angle2=90
and angle3=360

Parameters

• radius (float) –

• pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• angleDegrees1 (float) –

• angleDegrees2 (float) –

• angleDegrees3 (float) –

Return type
Shape

classmethod makeTorus(radius1: float, radius2: float, pnt:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angleDegrees1: float = 0,
angleDegrees2: float = 360)→ Solid

makeTorus(radius1,radius2,[pnt,dir,angle1,angle2,angle]) – Make a torus with a given radii and angles By
default pnt=Vector(0,0,0),dir=Vector(0,0,1),angle1=0 ,angle1=360 and angle=360

Parameters

• radius1 (float) –

• radius2 (float) –

• pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• angleDegrees1 (float) –

• angleDegrees2 (float) –

148 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Return type
Solid

classmethod makeWedge(dx: float, dy: float, dz: float, xmin: float, zmin: float, xmax: float, zmax: float, pnt:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0))→ Solid

Make a wedge located in pnt By default pnt=Vector(0,0,0) and dir=Vector(0,0,1)

Parameters

• dx (float) –

• dy (float) –

• dz (float) –

• xmin (float) –

• zmin (float) –

• xmax (float) –

• zmax (float) –

• pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

Return type
Solid

classmethod revolve(outerWire: Wire, innerWires: List[Wire], angleDegrees: Union[float, int], axisStart:
Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]], axisEnd: Union[Vector, Tuple[Union[int,
float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int,
float]]])→ Solid

classmethod revolve(face: Face, angleDegrees: Union[float, int], axisStart: Union[Vector,
Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float],
Union[int, float]]], axisEnd: Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]])→ Solid

Attempt to revolve the list of wires into a solid in the provided direction

Parameters

• outerWire (Wire) – the outermost wire

• innerWires (List[Wire]) – a list of inner wires

• angleDegrees (float, anything less than 360 degrees will leave the
shape open) – the angle to revolve through.

• axisStart (Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int,
float]]]) – the start point of the axis of rotation

3.12. CadQuery Class Summary 149

CadQuery Documentation, Release 2.4.0

• axisEnd (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
the end point of the axis of rotation

Returns
a Solid object

Return type
Solid

The wires must not intersect

• all wires must be closed

• there cannot be any intersecting or self-intersecting wires

• wires must be listed from outside in

• more than one levels of nesting is not supported reliably

• the wire(s) that you’re revolving cannot be centered

This method will attempt to sort the wires, but there is much work remaining to make this method reliable.

classmethod sweep(outerWire: Wire, innerWires: List[Wire], path: Union[Wire, Edge], makeSolid: bool
= True, isFrenet: bool = False, mode: Optional[Union[Vector, Wire, Edge]] = None,
transitionMode: Literal['transformed', 'round', 'right'] = 'transformed')→ Shape

classmethod sweep(face: Face, path: Union[Wire, Edge], makeSolid: bool = True, isFrenet: bool = False,
mode: Optional[Union[Vector, Wire, Edge]] = None, transitionMode:
Literal['transformed', 'round', 'right'] = 'transformed')→ Shape

Attempt to sweep the list of wires into a prismatic solid along the provided path

Parameters

• outerWire (Wire) – the outermost wire

• innerWires (List[Wire]) – a list of inner wires

• path (Union[Wire, Edge]) – The wire to sweep the face resulting from the wires over

• makeSolid (bool) – return Solid or Shell (default True)

• isFrenet (bool) – Frenet mode (default False)

• mode (Optional[Union[Vector, Wire, Edge]]) – additional sweep mode parame-
ters

• transitionMode (Literal['transformed', 'round', 'right']) – handling of profile
orientation at C1 path discontinuities. Possible values are {‘transformed’,’round’, ‘right’}
(default: ‘right’).

Returns
a Solid object

Return type
Shape

classmethod sweep_multi(profiles: Iterable[Union[Wire, Face]], path: Union[Wire, Edge], makeSolid:
bool = True, isFrenet: bool = False, mode: Optional[Union[Vector, Wire,
Edge]] = None)→ Solid

Multi section sweep. Only single outer profile per section is allowed.

Parameters

150 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• profiles (Iterable[Union[Wire, Face]]) – list of profiles

• path (Union[Wire, Edge]) – The wire to sweep the face resulting from the wires over

• mode (Optional[Union[Vector, Wire, Edge]]) – additional sweep mode parame-
ters.

• makeSolid (bool) –

• isFrenet (bool) –

Returns
a Solid object

Return type
Solid

class cadquery.StringSyntaxSelector(selectorString)
Bases: Selector

Filter lists objects using a simple string syntax. All of the filters available in the string syntax are also available
(usually with more functionality) through the creation of full-fledged selector objects. see Selector and its
subclasses

Filtering works differently depending on the type of object list being filtered.

Parameters
selectorString – A two-part selector string, [selector][axis]

Returns
objects that match the specified selector

Modifiers are ('|','+','-','<','>','%')

|
parallel to (same as ParallelDirSelector). Can return multiple objects.

#
perpendicular to (same as PerpendicularDirSelector)

+
positive direction (same as DirectionSelector)

-
negative direction (same as DirectionSelector)

>
maximize (same as DirectionMinMaxSelector with directionMax=True)

<
minimize (same as DirectionMinMaxSelector with directionMax=False)

%
curve/surface type (same as TypeSelector)

axisStrings are: X,Y,Z,XY,YZ,XZ or (x,y,z) which defines an arbitrary direction

It is possible to combine simple selectors together using logical operations. The following operations are sup-
ported

and
Logical AND, e.g. >X and >Y

or
Logical OR, e.g. |X or |Y

3.12. CadQuery Class Summary 151

CadQuery Documentation, Release 2.4.0

not
Logical NOT, e.g. not #XY

exc(ept)
Set difference (equivalent to AND NOT): |X exc >Z

Finally, it is also possible to use even more complex expressions with nesting and arbitrary number of terms, e.g.

(not >X[0] and #XY) or >XY[0]

Selectors are a complex topic: see Selectors Reference for more information

__init__(selectorString)
Feed the input string through the parser and construct an relevant complex selector object

filter(objectList: Sequence[Shape])
Filter give object list through th already constructed complex selector object

Parameters
objectList (Sequence[Shape]) –

class cadquery.TypeSelector(typeString: str)
Bases: Selector

Selects objects having the prescribed geometry type.

Applicability:
Faces: PLANE, CYLINDER, CONE, SPHERE, TORUS, BEZIER, BSPLINE, REVOLUTION, EXTRU-
SION, OFFSET, OTHER Edges: LINE, CIRCLE, ELLIPSE, HYPERBOLA, PARABOLA, BEZIER,
BSPLINE, OFFSET, OTHER

You can use the string selector syntax. For example this:

CQ(aCube).faces(TypeSelector("PLANE"))

will select 6 faces, and is equivalent to:

CQ(aCube).faces("%PLANE")

Parameters
typeString (str) –

__init__(typeString: str)

Parameters
typeString (str) –

filter(objectList: Sequence[Shape])→ List[Shape]
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

Return type
List[Shape]

class cadquery.Vector(x: float, y: float, z: float)

152 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

class cadquery.Vector(x: float, y: float)
class cadquery.Vector(v: Vector)
class cadquery.Vector(v: Sequence[float])
class cadquery.Vector(v: Union[gp_Vec, gp_Pnt, gp_Dir, gp_XYZ])
class cadquery.Vector

Bases: object

Create a 3-dimensional vector

Parameters
args – a 3D vector, with x-y-z parts.

you can either provide:

• nothing (in which case the null vector is return)

• a gp_Vec

• a vector (in which case it is copied)

• a 3-tuple

• a 2-tuple (z assumed to be 0)

• three float values: x, y, and z

• two float values: x,y

Center()→ Vector
Return the vector itself

The center of myself is myself. Provided so that vectors, vertices, and other shapes all support a common
interface, when Center() is requested for all objects on the stack.

Return type
Vector

__eq__(other: Vector)→ bool
Return self==value.

Parameters
other (Vector) –

Return type
bool

__hash__ = None

__init__(x: float, y: float, z: float)→ None
__init__(x: float, y: float)→ None
__init__(v: Vector)→ None
__init__(v: Sequence[float])→ None
__init__(v: Union[gp_Vec, gp_Pnt, gp_Dir, gp_XYZ])→ None
__init__()→ None

__repr__()→ str
Return repr(self).

Return type
str

3.12. CadQuery Class Summary 153

CadQuery Documentation, Release 2.4.0

__str__()→ str
Return str(self).

Return type
str

__weakref__

list of weak references to the object (if defined)

multiply(scale: float)→ Vector
Return a copy multiplied by the provided scalar

Parameters
scale (float) –

Return type
Vector

normalized()→ Vector
Return a normalized version of this vector

Return type
Vector

projectToLine(line: Vector)→ Vector
Returns a new vector equal to the projection of this Vector onto the line represented by Vector <line>

Parameters

• args – Vector

• line (Vector) –

Return type
Vector

Returns the projected vector.

projectToPlane(plane: Plane)→ Vector
Vector is projected onto the plane provided as input.

Parameters

• args – Plane object

• plane (Plane) –

Return type
Vector

Returns the projected vector.

class cadquery.Vertex(obj: TopoDS_Shape, forConstruction: bool = False)
Bases: Shape

A Single Point in Space

Parameters

• obj (TopoDS_Shape) –

• forConstruction (bool) –

154 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Center()→ Vector
The center of a vertex is itself!

Return type
Vector

__init__(obj: TopoDS_Shape, forConstruction: bool = False)
Create a vertex

Parameters

• obj (TopoDS_Shape) –

• forConstruction (bool) –

class cadquery.Wire(obj: TopoDS_Shape)
Bases: Shape, Mixin1D

A series of connected, ordered Edges, that typically bounds a Face

Parameters
obj (TopoDS_Shape) –

__iter__()→ Iterator[Edge]
Iterate over edges in an ordered way.

Return type
Iterator[Edge]

classmethod assembleEdges(listOfEdges: Iterable[Edge])→ Wire
Attempts to build a wire that consists of the edges in the provided list

Parameters

• cls –

• listOfEdges (Iterable[Edge]) – a list of Edge objects. The edges are not to be con-
secutive.

Returns
a wire with the edges assembled

Return type
Wire

BRepBuilderAPI_MakeWire::Error() values:

• BRepBuilderAPI_WireDone = 0

• BRepBuilderAPI_EmptyWire = 1

• BRepBuilderAPI_DisconnectedWire = 2

• BRepBuilderAPI_NonManifoldWire = 3

chamfer2D(d: float, vertices: Iterable[Vertex])→ Wire
Apply 2D chamfer to a wire

Parameters

• d (float) –

• vertices (Iterable[Vertex]) –

Return type
Wire

3.12. CadQuery Class Summary 155

CadQuery Documentation, Release 2.4.0

close()→ Wire
Close a Wire

Return type
Wire

classmethod combine(listOfWires: Iterable[Union[Wire, Edge]], tol: float = 1e-09)→ List[Wire]
Attempt to combine a list of wires and edges into a new wire.

Parameters

• cls –

• listOfWires (Iterable[Union[Wire, Edge]]) –

• tol (float) – default 1e-9

Returns
List[Wire]

Return type
List[Wire]

fillet2D(radius: float, vertices: Iterable[Vertex])→ Wire
Apply 2D fillet to a wire

Parameters

• radius (float) –

• vertices (Iterable[Vertex]) –

Return type
Wire

classmethod makeCircle(radius: float, center: Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]], normal:
Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int,
float], Union[int, float], Union[int, float]]])→ Wire

Makes a Circle centered at the provided point, having normal in the provided direction

Parameters

• radius (float) – floating point radius of the circle, must be > 0

• center (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
vector representing the center of the circle

• normal (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
vector representing the direction of the plane the circle should lie in

Return type
Wire

classmethod makeEllipse(x_radius: float, y_radius: float, center: Union[Vector, Tuple[Union[int, float],
Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]],
normal: Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]], xDir:
Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int,
float], Union[int, float], Union[int, float]]], angle1: float = 360.0, angle2: float
= 360.0, rotation_angle: float = 0.0, closed: bool = True)→ Wire

156 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Makes an Ellipse centered at the provided point, having normal in the provided direction

Parameters

• x_radius (float) – floating point major radius of the ellipse (x-axis), must be > 0

• y_radius (float) – floating point minor radius of the ellipse (y-axis), must be > 0

• center (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
vector representing the center of the circle

• normal (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
vector representing the direction of the plane the circle should lie in

• angle1 (float) – start angle of arc

• angle2 (float) – end angle of arc

• rotation_angle (float) – angle to rotate the created ellipse / arc

• xDir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• closed (bool) –

Return type
Wire

classmethod makeHelix(pitch: float, height: float, radius: float, center:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir:
~typing.Union[~cadquery.occ_impl.geom.Vector,
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]],
~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float],
~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angle: float = 360.0,
lefthand: bool = False)→ Wire

Make a helix with a given pitch, height and radius By default a cylindrical surface is used to create the
helix. If the fourth parameter is set (the apex given in degree) a conical surface is used instead’

Parameters

• pitch (float) –

• height (float) –

• radius (float) –

• center (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• dir (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –

• angle (float) –

• lefthand (bool) –

Return type
Wire

3.12. CadQuery Class Summary 157

CadQuery Documentation, Release 2.4.0

classmethod makePolygon(listOfVertices: Iterable[Union[Vector, Tuple[Union[int, float], Union[int,
float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]],
forConstruction: bool = False, close: bool = False)→ Wire

Construct a polygonal wire from points.

Parameters

• listOfVertices (Iterable[Union[Vector, Tuple[Union[int, float],
Union[int, float]], Tuple[Union[int, float], Union[int, float],
Union[int, float]]]]) –

• forConstruction (bool) –

• close (bool) –

Return type
Wire

offset2D(d: float, kind: Literal['arc', 'intersection', 'tangent'] = 'arc')→ List[Wire]
Offsets a planar wire

Parameters

• d (float) –

• kind (Literal['arc', 'intersection', 'tangent']) –

Return type
List[Wire]

stitch(other: Wire)→ Wire
Attempt to stitch wires

Parameters
other (Wire) –

Return type
Wire

class cadquery.Workplane(obj: Union[Vector, Location, Shape, Sketch])
class cadquery.Workplane(inPlane: Union[Plane, str] = 'XY', origin: Union[Tuple[float, float], Tuple[float,

float, float], Vector] = (0, 0, 0), obj: Optional[Union[Vector, Location, Shape,
Sketch]] = None)

Bases: object

Defines a coordinate system in space, in which 2D coordinates can be used.

Parameters

• plane (a Plane object, or a string in (XY|YZ|XZ|front|back|top|bottom|left|right))
– the plane in which the workplane will be done

• origin (a 3-tuple in global coordinates, or None to default to the
origin) – the desired origin of the new workplane

• obj (a CAD primitive, or None to use the centerpoint of the plane as
the initial stack value.) – an object to use initially for the stack

Raises
ValueError if the provided plane is not a plane, a valid named workplane

Returns
A Workplane object, with coordinate system matching the supplied plane.

158 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

The most common use is:

s = Workplane("XY")

After creation, the stack contains a single point, the origin of the underlying plane, and the current point is on
the origin.

Note: You can also create workplanes on the surface of existing faces using workplane()

__add__(toUnion: Union[Workplane, Solid, Compound])→ T
Syntactic sugar for union.

Notice that r = a + b is equivalent to r = a.union(b) and r = a | b.

Parameters

• self (T) –

• toUnion (Union[Workplane, Solid, Compound]) –

Return type
T

__and__(toUnion: Union[Workplane, Solid, Compound])→ T
Syntactic sugar for intersect.

Notice that r = a & b is equivalent to r = a.intersect(b).

Example:

Box = Workplane("XY").box(1, 1, 1, centered=(False, False, False))
Sphere = Workplane("XY").sphere(1)
result = Box & Sphere

Parameters

• self (T) –

• toUnion (Union[Workplane, Solid, Compound]) –

Return type
T

__init__(obj: Union[Vector, Location, Shape, Sketch])→ None
__init__(inPlane: Union[Plane, str] = 'XY', origin: Union[Tuple[float, float], Tuple[float, float, float],

Vector] = (0, 0, 0), obj: Optional[Union[Vector, Location, Shape, Sketch]] = None)→ None
make a workplane from a particular plane

Parameters

• inPlane (a Plane object, or a string in (XY|YZ|XZ|front|back|top|bottom|left|right))
– the plane in which the workplane will be done

• origin (a 3-tuple in global coordinates, or None to default to the
origin) – the desired origin of the new workplane

• obj (a CAD primitive, or None to use the centerpoint of the plane as
the initial stack value.) – an object to use initially for the stack

3.12. CadQuery Class Summary 159

CadQuery Documentation, Release 2.4.0

Raises
ValueError if the provided plane is not a plane, or one of XY|YZ|XZ

Returns
A Workplane object, with coordinate system matching the supplied plane.

The most common use is:

s = Workplane("XY")

After creation, the stack contains a single point, the origin of the underlying plane, and the current point is
on the origin.

__or__(toUnion: Union[Workplane, Solid, Compound])→ T
Syntactic sugar for union.

Notice that r = a | b is equivalent to r = a.union(b) and r = a + b.

Example:

Box = Workplane("XY").box(1, 1, 1, centered=(False, False, False))
Sphere = Workplane("XY").sphere(1)
result = Box | Sphere

Parameters

• self (T) –

• toUnion (Union[Workplane, Solid, Compound]) –

Return type
T

__sub__(toUnion: Union[Workplane, Solid, Compound])→ T
Syntactic sugar for cut.

Notice that r = a - b is equivalent to r = a.cut(b).

Example:

Box = Workplane("XY").box(1, 1, 1, centered=(False, False, False))
Sphere = Workplane("XY").sphere(1)
result = Box - Sphere

Parameters

• self (T) –

• toUnion (Union[Workplane, Solid, Compound]) –

Return type
T

__weakref__

list of weak references to the object (if defined)

add(obj: Workplane)→ T
add(obj: Union[Vector, Location, Shape, Sketch])→ T

160 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

add(obj: Iterable[Union[Vector, Location, Shape, Sketch]])→ T
Adds an object or a list of objects to the stack

Parameters
obj (a Workplane, CAD primitive, or list of CAD primitives) – an object to
add

Returns
a Workplane with the requested operation performed

If a Workplane object, the values of that object’s stack are added. If a list of cad primitives, they are all
added. If a single CAD primitive then it is added.

Used in rare cases when you need to combine the results of several CQ results into a single Workplane
object.

all()→ List[T]
Return a list of all CQ objects on the stack.

useful when you need to operate on the elements individually.

Contrast with vals, which returns the underlying objects for all of the items on the stack

Parameters
self (T) –

Return type
List[T]

ancestors(kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound'], tag:
Optional[str] = None)→ T

Select topological ancestors.

Parameters

• self (T) –

• kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid',
'CompSolid', 'Compound']) – kind of ancestor, e.g. “Face” or “Edge”

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a Workplane object whose stack contains selected ancestors.

Return type
T

box(length: float, width: float, height: float, centered: Union[bool, Tuple[bool, bool, bool]] = True, combine:
Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True)→ T
Return a 3d box with specified dimensions for each object on the stack.

Parameters

• self (T) –

• length (float) – box size in X direction

• width (float) – box size in Y direction

• height (float) – box size in Z direction

• centered (Union[bool, Tuple[bool, bool, bool]]) – If True, the box will be cen-
tered around the reference point. If False, the corner of the box will be on the reference

3.12. CadQuery Class Summary 161

CadQuery Documentation, Release 2.4.0

point and it will extend in the positive x, y and z directions. Can also use a 3-tuple to
specify centering along each axis.

• combine (Union[bool, Literal['cut', 'a', 's']]) – should the results be combined
with other solids on the stack (and each other)?

• clean (bool) – call clean() afterwards to have a clean shape

Return type
T

One box is created for each item on the current stack. If no items are on the stack, one box using the current
workplane center is created.

If combine is true, the result will be a single object on the stack. If a solid was found in the chain, the
result is that solid with all boxes produced fused onto it otherwise, the result is the combination of all the
produced boxes.

If combine is false, the result will be a list of the boxes produced.

Most often boxes form the basis for a part:

make a single box with lower left corner at origin
s = Workplane().box(1, 2, 3, centered=False)

But sometimes it is useful to create an array of them:

create 4 small square bumps on a larger base plate:
s = (

Workplane()
.box(4, 4, 0.5)
.faces(">Z")
.workplane()
.rect(3, 3, forConstruction=True)
.vertices()
.box(0.25, 0.25, 0.25, combine=True)

)

cboreHole(diameter: float, cboreDiameter: float, cboreDepth: float, depth: Optional[float] = None, clean:
bool = True)→ T

Makes a counterbored hole for each item on the stack.

Parameters

• self (T) –

• diameter (float) – the diameter of the hole

• cboreDiameter (float) – the diameter of the cbore, must be greater than hole diameter

• cboreDepth (float > 0) – depth of the counterbore

• depth (float > 0 or None to drill thru the entire part) – the depth of the
hole

• clean (bool) – call clean() afterwards to have a clean shape

Return type
T

The surface of the hole is at the current workplane plane.

162 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

One hole is created for each item on the stack. A very common use case is to use a construction rectangle
to define the centers of a set of holes, like so:

s = (
Workplane()
.box(2, 4, 0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cboreHole(0.125, 0.25, 0.125, depth=None)

)

This sample creates a plate with a set of holes at the corners.

Plugin Note: this is one example of the power of plugins. Counterbored holes are quite time consuming to
create, but are quite easily defined by users.

see cskHole() to make countersinks instead of counterbores

center(x: float, y: float)→ T
Shift local coordinates to the specified location.

The location is specified in terms of local coordinates.

Parameters

• self (T) –

• x (float) – the new x location

• y (float) – the new y location

Returns
the Workplane object, with the center adjusted.

Return type
T

The current point is set to the new center. This method is useful to adjust the center point after it has been
created automatically on a face, but not where you’d like it to be.

In this example, we adjust the workplane center to be at the corner of a cube, instead of the center of a face,
which is the default:

this workplane is centered at x=0.5,y=0.5, the center of the upper face
s = Workplane().box(1, 1, 1).faces(">Z").workplane()

s = s.center(-0.5, -0.5) # move the center to the corner
t = s.circle(0.25).extrude(0.2)
assert t.faces().size() == 9 # a cube with a cylindrical nub at the top right␣
→˓corner

The result is a cube with a round boss on the corner

chamfer(length: float, length2: Optional[float] = None)→ T
Chamfers a solid on the selected edges.

The edges on the stack are chamfered. The solid to which the edges belong must be in the parent chain of
the selected edges.

3.12. CadQuery Class Summary 163

CadQuery Documentation, Release 2.4.0

Optional parameter length2 can be supplied with a different value than length for a chamfer that is shorter
on one side longer on the other side.

Parameters

• self (T) –

• length (float) – the length of the chamfer, must be greater than zero

• length2 (Optional[float]) – optional parameter for asymmetrical chamfer

Raises

• ValueError – if at least one edge is not selected

• ValueError – if the solid containing the edge is not in the chain

Returns
CQ object with the resulting solid selected.

Return type
T

This example will create a unit cube, with the top edges chamfered:

s = Workplane("XY").box(1, 1, 1).faces("+Z").chamfer(0.1)

This example will create chamfers longer on the sides:

s = Workplane("XY").box(1, 1, 1).faces("+Z").chamfer(0.2, 0.1)

circle(radius: float, forConstruction: bool = False)→ T
Make a circle for each item on the stack.

Parameters

• self (T) –

• radius (float) – radius of the circle

• forConstruction (true if the wires are for reference, false if they
are creating part geometry) – should the new wires be reference geometry only?

Returns
a new CQ object with the created wires on the stack

Return type
T

A common use case is to use a for-construction rectangle to define the centers of a hole pattern:

s = Workplane().rect(4.0, 4.0, forConstruction=True).vertices().circle(0.25)

Creates 4 circles at the corners of a square centered on the origin. Another common case is to use successive
circle() calls to create concentric circles. This works because the center of a circle is its reference point:

s = Workplane().circle(2.0).circle(1.0)

Creates two concentric circles, which when extruded will form a ring.

Future Enhancements:
better way to handle forConstruction project points not in the workplane plane onto the workplane
plane

164 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

clean()→ T
Cleans the current solid by removing unwanted edges from the faces.

Normally you don’t have to call this function. It is automatically called after each related operation. You
can disable this behavior with clean=False parameter if method has any. In some cases this can improve
performance drastically but is generally dis-advised since it may break some operations such as fillet.

Note that in some cases where lots of solid operations are chained, clean() may actually improve perfor-
mance since the shape is ‘simplified’ at each step and thus next operation is easier.

Also note that, due to limitation of the underlying engine, clean may fail to produce a clean output in some
cases such as spherical faces.

Parameters
self (T) –

Return type
T

close()→ T
End construction, and attempt to build a closed wire.

Returns
a CQ object with a completed wire on the stack, if possible.

Parameters
self (T) –

Return type
T

After 2D (or 3D) drafting with methods such as lineTo, threePointArc, tangentArcPoint and polyline, it is
necessary to convert the edges produced by these into one or more wires.

When a set of edges is closed, CadQuery assumes it is safe to build the group of edges into a wire. This
example builds a simple triangular prism:

s = Workplane().lineTo(1, 0).lineTo(1, 1).close().extrude(0.2)

combine(clean: bool = True, glue: bool = False, tol: Optional[float] = None)→ T
Attempts to combine all of the items on the stack into a single item.

WARNING: all of the items must be of the same type!

Parameters

• self (T) –

• clean (bool) – call clean() afterwards to have a clean shape

• glue (bool) – use a faster gluing mode for non-overlapping shapes (default False)

• tol (Optional[float]) – tolerance value for fuzzy bool operation mode (default None)

Raises
ValueError if there are no items on the stack, or if they cannot be combined

Returns
a CQ object with the resulting object selected

Return type
T

3.12. CadQuery Class Summary 165

CadQuery Documentation, Release 2.4.0

combineSolids(otherCQToCombine: Optional[Workplane] = None)→ Workplane
!!!DEPRECATED!!! use union() Combines all solids on the current stack, and any context object, together
into a single object.

After the operation, the returned solid is also the context solid.

Parameters
otherCQToCombine (Optional[Workplane]) – another CadQuery to combine.

Returns
a CQ object with the resulting combined solid on the stack.

Return type
Workplane

Most of the time, both objects will contain a single solid, which is combined and returned on the stack of
the new object.

compounds(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select compounds on the stack, optionally filtering the selection. If there are multiple objects on the stack,
they are collected and a list of all the distinct compounds is returned.

Parameters

• self (T) –

• selector (Optional[Union[str, Selector]]) – optional Selector object, or string
selector expression (see StringSyntaxSelector)

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a CQ object whose stack contains all of the distinct compounds of all objects on the current
stack, filtered by the provided selector.

Return type
T

A compound contains multiple CAD primitives that resulted from a single operation, such as a union, cut,
split, or fillet. Compounds can contain multiple edges, wires, or solids.

consolidateWires()→ T
Attempt to consolidate wires on the stack into a single. If possible, a new object with the results are returned.
if not possible, the wires remain separated

Parameters
self (T) –

Return type
T

copyWorkplane(obj: T)→ T
Copies the workplane from obj.

Parameters
obj (a CQ object) – an object to copy the workplane from

Returns
a CQ object with obj’s workplane

Return type
T

166 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

cskHole(diameter: float, cskDiameter: float, cskAngle: float, depth: Optional[float] = None, clean: bool =
True)→ T

Makes a countersunk hole for each item on the stack.

Parameters

• self (T) –

• diameter (float > 0) – the diameter of the hole

• cskDiameter (float) – the diameter of the countersink, must be greater than hole diam-
eter

• cskAngle (float > 0) – angle of the countersink, in degrees (82 is common)

• depth (float > 0 or None to drill thru the entire part.) – the depth of the
hole

• clean (bool) – call clean() afterwards to have a clean shape

Return type
T

The surface of the hole is at the current workplane.

One hole is created for each item on the stack. A very common use case is to use a construction rectangle
to define the centers of a set of holes, like so:

s = (
Workplane()
.box(2, 4, 0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)

)

This sample creates a plate with a set of holes at the corners.

Plugin Note: this is one example of the power of plugins. CounterSunk holes are quite time consuming to
create, but are quite easily defined by users.

see cboreHole() to make counterbores instead of countersinks

cut(toCut: Union[Workplane, Solid, Compound], clean: bool = True, tol: Optional[float] = None)→ T
Cuts the provided solid from the current solid, IE, perform a solid subtraction.

Parameters

• self (T) –

• toCut (Union[Workplane, Solid, Compound]) – a solid object, or a Workplane ob-
ject having a solid

• clean (bool) – call clean() afterwards to have a clean shape

• tol (Optional[float]) – tolerance value for fuzzy bool operation mode (default None)

Raises
ValueError – if there is no solid to subtract from in the chain

Returns
a Workplane object with the resulting object selected

3.12. CadQuery Class Summary 167

CadQuery Documentation, Release 2.4.0

Return type
T

cutBlind(until: Union[float, Literal['next', 'last'], Face], clean: bool = True, both: bool = False, taper:
Optional[float] = None)→ T

Use all un-extruded wires in the parent chain to create a prismatic cut from existing solid.

Specify either a distance value, or one of “next”, “last” to indicate a face to cut to.

Similar to extrude, except that a solid in the parent chain is required to remove material from. cutBlind
always removes material from a part.

Parameters

• self (T) –

• until (Union[float, Literal['next', 'last'], Face]) – The distance to cut to,
normal to the workplane plane. When a negative float is passed the cut extends this far
in the opposite direction to the normal of the plane (i.e in the solid). The string “next” cuts
until the next face orthogonal to the wire normal. “last” cuts to the last face. If an object
of type Face is passed, then the cut will extend until this face.

• clean (bool) – call clean() afterwards to have a clean shape

• both (bool) – cut in both directions symmetrically

• taper (Optional[float]) – angle for optional tapered extrusion

Raises
ValueError – if there is no solid to subtract from in the chain

Returns
a CQ object with the resulting object selected

Return type
T

see cutThruAll() to cut material from the entire part

cutEach(fcn: Callable[[Location], Shape], useLocalCoords: bool = False, clean: bool = True)→ T
Evaluates the provided function at each point on the stack (ie, eachpoint) and then cuts the result from the
context solid.

Parameters

• self (T) –

• fcn (Callable[[Location], Shape]) – a function suitable for use in the eachpoint
method: ie, that accepts a vector

• useLocalCoords (bool) – same as for eachpoint()

• clean (bool) – call clean() afterwards to have a clean shape

Raises
ValueError – if no solids or compounds are found in the stack or parent chain

Returns
a CQ object that contains the resulting solid

Return type
T

168 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

cutThruAll(clean: bool = True, taper: float = 0)→ T
Use all un-extruded wires in the parent chain to create a prismatic cut from existing solid. Cuts through all
material in both normal directions of workplane.

Similar to extrude, except that a solid in the parent chain is required to remove material from. cutThruAll
always removes material from a part.

Parameters

• self (T) –

• clean (bool) – call clean() afterwards to have a clean shape

• taper (float) –

Raises

• ValueError – if there is no solid to subtract from in the chain

• ValueError – if there are no pending wires to cut with

Returns
a CQ object with the resulting object selected

Return type
T

see cutBlind() to cut material to a limited depth

cylinder(height: float, radius: float, direct: ~cadquery.occ_impl.geom.Vector = Vector: (0.0, 0.0, 1.0),
angle: float = 360, centered: ~typing.Union[bool, ~typing.Tuple[bool, bool, bool]] = True,
combine: ~typing.Union[bool, ~typing.Literal['cut', 'a', 's']] = True, clean: bool = True)→ T

Returns a cylinder with the specified radius and height for each point on the stack

Parameters

• self (T) –

• height (float) – The height of the cylinder

• radius (float) – The radius of the cylinder

• direct (A three-tuple) – The direction axis for the creation of the cylinder

• angle (float > 0) – The angle to sweep the cylinder arc through

• centered (Union[bool, Tuple[bool, bool, bool]]) – If True, the cylinder will
be centered around the reference point. If False, the corner of a bounding box around the
cylinder will be on the reference point and it will extend in the positive x, y and z directions.
Can also use a 3-tuple to specify centering along each axis.

• combine (true to combine shapes, false otherwise) – Whether the results
should be combined with other solids on the stack (and each other)

• clean (bool) – call clean() afterwards to have a clean shape

Returns
A cylinder object for each point on the stack

Return type
T

One cylinder is created for each item on the current stack. If no items are on the stack, one cylinder is
created using the current workplane center.

3.12. CadQuery Class Summary 169

CadQuery Documentation, Release 2.4.0

If combine is true, the result will be a single object on the stack. If a solid was found in the chain, the
result is that solid with all cylinders produced fused onto it otherwise, the result is the combination of all
the produced cylinders.

If combine is false, the result will be a list of the cylinders produced.

each(callback: Callable[[Union[Vector, Location, Shape, Sketch]], Shape], useLocalCoordinates: bool =
False, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True)→ T

Runs the provided function on each value in the stack, and collects the return values into a new CQ object.

Special note: a newly created workplane always has its center point as its only stack item

Parameters

• self (T) –

• callBackFunction – the function to call for each item on the current stack.

• useLocalCoordinates (bool) – should values be converted from local coordinates first?

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

• callback (Callable[[Union[Vector, Location, Shape, Sketch]], Shape]) –

Return type
T

The callback function must accept one argument, which is the item on the stack, and return one object,
which is collected. If the function returns None, nothing is added to the stack. The object passed into the
callBackFunction is potentially transformed to local coordinates, if useLocalCoordinates is true

useLocalCoordinates is very useful for plugin developers.

If false, the callback function is assumed to be working in global coordinates. Objects created are added
as-is, and objects passed into the function are sent in using global coordinates

If true, the calling function is assumed to be working in local coordinates. Objects are transformed to local
coordinates before they are passed into the callback method, and result objects are transformed to global
coordinates after they are returned.

This allows plugin developers to create objects in local coordinates, without worrying about the fact that
the working plane is different than the global coordinate system.

TODO: wrapper object for Wire will clean up forConstruction flag everywhere

eachpoint(callback: Callable[[Location], Shape], useLocalCoordinates: bool = False, combine:
Union[bool, Literal['cut', 'a', 's']] = False, clean: bool = True)→ T

Same as each(), except each item on the stack is converted into a point before it is passed into the callback
function.

Returns
CadQuery object which contains a list of vectors (points) on its stack.

Parameters

• self (T) –

• useLocalCoordinates (bool) – should points be in local or global coordinates

170 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

• callback (Callable[[Location], Shape]) –

Return type
T

The resulting object has a point on the stack for each object on the original stack. Vertices and points remain
a point. Faces, Wires, Solids, Edges, and Shells are converted to a point by using their center of mass.

If the stack has zero length, a single point is returned, which is the center of the current workplane/coordinate
system

edges(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select the edges of objects on the stack, optionally filtering the selection. If there are multiple objects on
the stack, the edges of all objects are collected and a list of all the distinct edges is returned.

Parameters

• self (T) –

• selector (Optional[Union[str, Selector]]) – optional Selector object, or string
selector expression (see StringSyntaxSelector)

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a CQ object whose stack contains all of the distinct edges of all objects on the current stack,
filtered by the provided selector.

Return type
T

If there are no edges for any objects on the current stack, an empty CQ object is returned

The typical use is to select the edges of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").edges().size()

returns 4, because the topmost face of a cube will contain four edges. Similarly:

Workplane().box(1, 1, 1).edges().size()

returns 12, because a cube has a total of 12 edges, And:

Workplane().box(1, 1, 1).edges("|Z").size()

returns 4, because a cube has 4 edges parallel to the z direction

ellipse(x_radius: float, y_radius: float, rotation_angle: float = 0.0, forConstruction: bool = False)→ T
Make an ellipse for each item on the stack.

Parameters

• self (T) –

• x_radius (float) – x radius of the ellipse (x-axis of plane the ellipse should lie in)

• y_radius (float) – y radius of the ellipse (y-axis of plane the ellipse should lie in)

3.12. CadQuery Class Summary 171

CadQuery Documentation, Release 2.4.0

• rotation_angle (float) – angle to rotate the ellipse

• forConstruction (true if the wires are for reference, false if they
are creating part geometry) – should the new wires be reference geometry only?

Returns
a new CQ object with the created wires on the stack

Return type
T

NOTE Due to a bug in opencascade (https://tracker.dev.opencascade.org/view.php?id=31290) the center of
mass (equals center for next shape) is shifted. To create concentric ellipses use:

Workplane("XY").center(10, 20).ellipse(100, 10).center(0, 0).ellipse(50, 5)

ellipseArc(x_radius: float, y_radius: float, angle1: float = 360, angle2: float = 360, rotation_angle: float =
0.0, sense: Literal[- 1, 1] = 1, forConstruction: bool = False, startAtCurrent: bool = True,
makeWire: bool = False)→ T

Draw an elliptical arc with x and y radiuses either with start point at current point or or current point being
the center of the arc

Parameters

• self (T) –

• x_radius (float) – x radius of the ellipse (along the x-axis of plane the ellipse should lie
in)

• y_radius (float) – y radius of the ellipse (along the y-axis of plane the ellipse should lie
in)

• angle1 (float) – start angle of arc

• angle2 (float) – end angle of arc (angle2 == angle1 return closed ellipse = default)

• rotation_angle (float) – angle to rotate the created ellipse / arc

• sense (Literal[-1, 1]) – clockwise (-1) or counter clockwise (1)

• startAtCurrent (bool) – True: start point of arc is moved to current point; False: center
of arc is on current point

• makeWire (bool) – convert the resulting arc edge to a wire

• forConstruction (bool) –

Return type
T

end(n: int = 1)→ Workplane
Return the nth parent of this CQ element

Parameters
n (int) – number of ancestor to return (default: 1)

Return type
a CQ object

Raises
ValueError if there are no more parents in the chain.

For example:

172 Chapter 3. Table Of Contents

https://tracker.dev.opencascade.org/view.php?id=31290

CadQuery Documentation, Release 2.4.0

CQ(obj).faces("+Z").vertices().end()

will return the same as:

CQ(obj).faces("+Z")

exportSvg(fileName: str)→ None
Exports the first item on the stack as an SVG file

For testing purposes mainly.

Parameters
fileName (str) – the filename to export, absolute path to the file

Return type
None

extrude(until: Union[float, Literal['next', 'last'], Face], combine: Union[bool, Literal['cut', 'a', 's']] = True,
clean: bool = True, both: bool = False, taper: Optional[float] = None)→ T

Use all un-extruded wires in the parent chain to create a prismatic solid.

Parameters

• self (T) –

• until (Union[float, Literal['next', 'last'], Face]) – The distance to extrude,
normal to the workplane plane. When a float is passed, the extrusion extends this far and
a negative value is in the opposite direction to the normal of the plane. The string “next”
extrudes until the next face orthogonal to the wire normal. “last” extrudes to the last face.
If a object of type Face is passed then the extrusion will extend until this face. Note that
the Workplane must contain a Solid for extruding to a given face.

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

• both (bool) – extrude in both directions symmetrically

• taper (Optional[float]) – angle for optional tapered extrusion

Returns
a CQ object with the resulting solid selected.

Return type
T

The returned object is always a CQ object, and depends on whether combine is True, and whether a context
solid is already defined:

• if combine is False, the new value is pushed onto the stack. Note that when extruding
until a specified face, combine can not be False

• if combine is true, the value is combined with the context solid if it exists,
and the resulting solid becomes the new context solid.

faces(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select the faces of objects on the stack, optionally filtering the selection. If there are multiple objects on
the stack, the faces of all objects are collected and a list of all the distinct faces is returned.

Parameters

3.12. CadQuery Class Summary 173

CadQuery Documentation, Release 2.4.0

• self (T) –

• selector (Optional[Union[str, Selector]]) – optional Selector object, or string
selector expression (see StringSyntaxSelector)

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a CQ object whose stack contains all of the distinct faces of all objects on the current stack,
filtered by the provided selector.

Return type
T

If there are no faces for any objects on the current stack, an empty CQ object is returned.

The typical use is to select the faces of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").size()

returns 1, because a cube has one face with a normal in the +Z direction. Similarly:

Workplane().box(1, 1, 1).faces().size()

returns 6, because a cube has a total of 6 faces, And:

Workplane().box(1, 1, 1).faces("|Z").size()

returns 2, because a cube has 2 faces having normals parallel to the z direction

fillet(radius: float)→ T
Fillets a solid on the selected edges.

The edges on the stack are filleted. The solid to which the edges belong must be in the parent chain of the
selected edges.

Parameters

• self (T) –

• radius (float) – the radius of the fillet, must be > zero

Raises

• ValueError – if at least one edge is not selected

• ValueError – if the solid containing the edge is not in the chain

Returns
CQ object with the resulting solid selected.

Return type
T

This example will create a unit cube, with the top edges filleted:

s = Workplane().box(1, 1, 1).faces("+Z").edges().fillet(0.1)

findFace(searchStack: bool = True, searchParents: bool = True)→ Face
Finds the first face object in the chain, searching from the current node backwards through parents until
one is found.

Parameters

174 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• searchStack (bool) – should objects on the stack be searched first.

• searchParents (bool) – should parents be searched?

Returns
A face or None if no face is found.

Return type
Face

findSolid(searchStack: bool = True, searchParents: bool = True)→ Union[Solid, Compound]
Finds the first solid object in the chain, searching from the current node backwards through parents until
one is found.

Parameters

• searchStack (bool) – should objects on the stack be searched first?

• searchParents (bool) – should parents be searched?

Raises
ValueError – if no solid is found

Return type
Union[Solid, Compound]

This function is very important for chains that are modifying a single parent object, most often a solid.

Most of the time, a chain defines or selects a solid, and then modifies it using workplanes or other operations.

Plugin Developers should make use of this method to find the solid that should be modified, if the plugin
implements a unary operation, or if the operation will automatically merge its results with an object already
on the stack.

first()→ T
Return the first item on the stack

Returns
the first item on the stack.

Return type
a CQ object

Parameters
self (T) –

hLine(distance: float, forConstruction: bool = False)→ T
Make a horizontal line from the current point the provided distance

Parameters

• self (T) –

• distance (float) –

(x) distance from current point

• forConstruction (bool) –

Returns
the Workplane object with the current point at the end of the new line

Return type
T

3.12. CadQuery Class Summary 175

CadQuery Documentation, Release 2.4.0

hLineTo(xCoord: float, forConstruction: bool = False)→ T
Make a horizontal line from the current point to the provided x coordinate.

Useful if it is more convenient to specify the end location rather than distance, as in hLine()

Parameters

• self (T) –

• xCoord (float) – x coordinate for the end of the line

• forConstruction (bool) –

Returns
the Workplane object with the current point at the end of the new line

Return type
T

hole(diameter: float, depth: Optional[float] = None, clean: bool = True)→ T
Makes a hole for each item on the stack.

Parameters

• self (T) –

• diameter (float) – the diameter of the hole

• depth (float > 0 or None to drill thru the entire part.) – the depth of the
hole

• clean (bool) – call clean() afterwards to have a clean shape

Return type
T

The surface of the hole is at the current workplane.

One hole is created for each item on the stack. A very common use case is to use a construction rectangle
to define the centers of a set of holes, like so:

s = (
Workplane()
.box(2, 4, 0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.hole(0.125, 82)

)

This sample creates a plate with a set of holes at the corners.

Plugin Note: this is one example of the power of plugins. CounterSunk holes are quite time consuming to
create, but are quite easily defined by users.

see cboreHole() and cskHole() to make counterbores or countersinks

interpPlate(surf_edges: Union[Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]],
Sequence[Union[Edge, Wire]], Workplane], surf_pts: Sequence[Union[Tuple[float, float],
Tuple[float, float, float], Vector]] = [], thickness: float = 0, combine: Union[bool, Literal['cut',
'a', 's']] = False, clean: bool = True, degree: int = 3, nbPtsOnCur: int = 15, nbIter: int = 2,
anisotropy: bool = False, tol2d: float = 1e-05, tol3d: float = 0.0001, tolAng: float = 0.01,
tolCurv: float = 0.1, maxDeg: int = 8, maxSegments: int = 9)→ T

176 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Returns a plate surface that is ‘thickness’ thick, enclosed by ‘surf_edge_pts’ points, and going through
‘surf_pts’ points. Using pushPoints directly with interpPlate and combine=True, can be very resource
intensive depending on the complexity of the shape. In this case set combine=False.

Parameters

• self (T) –

• surf_edges (Union[Sequence[Union[Tuple[float, float], Tuple[float,
float, float], Vector]], Sequence[Union[Edge, Wire]], Workplane]) –
list of [x,y,z] ordered coordinates or list of ordered or unordered edges, wires

• surf_pts (Sequence[Union[Tuple[float, float], Tuple[float, float,
float], Vector]]) – list of points (uses only edges if [])

• thickness (float) – value may be negative or positive depending on thickening direction
(2D surface if 0)

• combine (Union[bool, Literal['cut', 'a', 's']]) – should the results be combined
with other solids on the stack (and each other)?

• clean (bool) – call clean() afterwards to have a clean shape

• degree (int) – >= 2

• nbPtsOnCur (int) – number of points on curve >= 15

• nbIter (int) – number of iterations >= 2

• anisotropy (bool) – = bool Anisotropy

• tol2d (float) – 2D tolerance

• tol3d (float) – 3D tolerance

• tolAng (float) – angular tolerance

• tolCurv (float) – tolerance for curvature

• maxDeg (int) – highest polynomial degree >= 2

• maxSegments (int) – greatest number of segments >= 2

Return type
T

intersect(toIntersect: Union[Workplane, Solid, Compound], clean: bool = True, tol: Optional[float] =
None)→ T

Intersects the provided solid from the current solid.

Parameters

• self (T) –

• toIntersect (Union[Workplane, Solid, Compound]) – a solid object, or a Work-
plane object having a solid

• clean (bool) – call clean() afterwards to have a clean shape

• tol (Optional[float]) – tolerance value for fuzzy bool operation mode (default None)

Raises
ValueError – if there is no solid to intersect with in the chain

Returns
a Workplane object with the resulting object selected

3.12. CadQuery Class Summary 177

CadQuery Documentation, Release 2.4.0

Return type
T

item(i: int)→ T
Return the ith item on the stack.

Return type
a CQ object

Parameters

• self (T) –

• i (int) –

largestDimension()→ float
Finds the largest dimension in the stack.

Used internally to create thru features, this is how you can compute how long or wide a feature must be to
make sure to cut through all of the material

Raises
ValueError – if no solids or compounds are found

Returns
A value representing the largest dimension of the first solid on the stack

Return type
float

last()→ T
Return the last item on the stack.

Return type
a CQ object

Parameters
self (T) –

line(xDist: float, yDist: float, forConstruction: bool = False)→ T
Make a line from the current point to the provided point, using dimensions relative to the current point

Parameters

• self (T) –

• xDist (float) – x distance from current point

• yDist (float) – y distance from current point

• forConstruction (bool) –

Returns
the workplane object with the current point at the end of the new line

Return type
T

see lineTo() if you want to use absolute coordinates to make a line instead.

lineTo(x: float, y: float, forConstruction: bool = False)→ T
Make a line from the current point to the provided point

Parameters

178 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• self (T) –

• x (float) – the x point, in workplane plane coordinates

• y (float) – the y point, in workplane plane coordinates

• forConstruction (bool) –

Returns
the Workplane object with the current point at the end of the new line

Return type
T

See line() if you want to use relative dimensions to make a line instead.

loft(ruled: bool = False, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True)→ T
Make a lofted solid, through the set of wires.

Parameters

• self (T) –

• ruled (bool) – When set to True connects each section linearly and without continuity

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

Returns
a Workplane object containing the created loft

Return type
T

mirror(mirrorPlane: Union[Literal['XY', 'YX', 'XZ', 'ZX', 'YZ', 'ZY'], Tuple[float, float], Tuple[float, float,
float], Vector, Face, Workplane] = 'XY', basePointVector: Optional[Union[Tuple[float, float],
Tuple[float, float, float], Vector]] = None, union: bool = False)→ T

Mirror a single CQ object.

Parameters

• self (T) –

• mirrorPlane (string, one of "XY", "YX", "XZ", "ZX", "YZ", "ZY" the
planes or the normal vector of the plane eg (1,0,0) or a Face
object) – the plane to mirror about

• basePointVector (Optional[Union[Tuple[float, float], Tuple[float,
float, float], Vector]]) – the base point to mirror about (this is overwritten if a
Face is passed)

• union (bool) – If true will perform a union operation on the mirrored object

Return type
T

mirrorX()→ T
Mirror entities around the x axis of the workplane plane.

Returns
a new object with any free edges consolidated into as few wires as possible.

3.12. CadQuery Class Summary 179

CadQuery Documentation, Release 2.4.0

Parameters
self (T) –

Return type
T

All free edges are collected into a wire, and then the wire is mirrored, and finally joined into a new wire

Typically used to make creating wires with symmetry easier.

mirrorY()→ T
Mirror entities around the y axis of the workplane plane.

Returns
a new object with any free edges consolidated into as few wires as possible.

Parameters
self (T) –

Return type
T

All free edges are collected into a wire, and then the wire is mirrored, and finally joined into a new wire

Typically used to make creating wires with symmetry easier. This line of code:

s = Workplane().lineTo(2, 2).threePointArc((3, 1), (2, 0)).mirrorX().extrude(0.
→˓25)

Produces a flat, heart shaped object

move(xDist: float = 0, yDist: float = 0)→ T
Move the specified distance from the current point, without drawing.

Parameters

• self (T) –

• xDist (float, or none for zero) – desired x distance, in local coordinates

• yDist (float, or none for zero.) – desired y distance, in local coordinates

Return type
T

Not to be confused with center(), which moves the center of the entire workplane, this method only
moves the current point (and therefore does not affect objects already drawn).

See moveTo() to do the same thing but using absolute coordinates

moveTo(x: float = 0, y: float = 0)→ T
Move to the specified point, without drawing.

Parameters

• self (T) –

• x (float, or none for zero) – desired x location, in local coordinates

• y (float, or none for zero.) – desired y location, in local coordinates

Return type
T

180 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Not to be confused with center(), which moves the center of the entire workplane, this method only
moves the current point (and therefore does not affect objects already drawn).

See move() to do the same thing but using relative dimensions

newObject(objlist: Iterable[Union[Vector, Location, Shape, Sketch]])→ T
Create a new workplane object from this one.

Overrides CQ.newObject, and should be used by extensions, plugins, and subclasses to create new objects.

Parameters

• self (T) –

• objlist (a list of CAD primitives) – new objects to put on the stack

Returns
a new Workplane object with the current workplane as a parent.

Return type
T

offset2D(d: float, kind: Literal['arc', 'intersection', 'tangent'] = 'arc', forConstruction: bool = False)→ T
Creates a 2D offset wire.

Parameters

• self (T) –

• d (float) – thickness. Negative thickness denotes offset to inside.

• kind (Literal['arc', 'intersection', 'tangent']) – offset kind. Use “arc” for
rounded and “intersection” for sharp edges (default: “arc”)

• forConstruction (bool) – Should the result be added to pending wires?

Returns
CQ object with resulting wire(s).

Return type
T

parametricCurve(func: Callable[[float], Union[Tuple[float, float], Tuple[float, float, float], Vector]], N: int
= 400, start: float = 0, stop: float = 1, tol: float = 1e-06, minDeg: int = 1, maxDeg: int =
6, smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1), makeWire: bool = True)→ T

Create a spline curve approximating the provided function.

Parameters

• self (T) –

• func (float --> (float,float,float)) – function f(t) that will generate (x,y,z) pairs

• N (int) – number of points for discretization

• start (float) – starting value of the parameter t

• stop (float) – final value of the parameter t

• tol (float) – tolerance of the algorithm (default: 1e-6)

• minDeg (int) – minimum spline degree (default: 1)

• maxDeg (int) – maximum spline degree (default: 6)

• smoothing (Optional[Tuple[float, float, float]]) – optional parameters for
the variational smoothing algorithm (default: (1,1,1))

3.12. CadQuery Class Summary 181

CadQuery Documentation, Release 2.4.0

• makeWire (bool) – convert the resulting spline edge to a wire

Returns
a Workplane object with the current point unchanged

Return type
T

parametricSurface(func: Callable[[float, float], Union[Tuple[float, float], Tuple[float, float, float],
Vector]], N: int = 20, start: float = 0, stop: float = 1, tol: float = 0.01, minDeg: int =
1, maxDeg: int = 6, smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1))→ T

Create a spline surface approximating the provided function.

Parameters

• self (T) –

• func ((float,float) --> (float,float,float)) – function f(u,v) that will gener-
ate (x,y,z) pairs

• N (int) – number of points for discretization in one direction

• start (float) – starting value of the parameters u,v

• stop (float) – final value of the parameters u,v

• tol (float) – tolerance used by the approximation algorithm (default: 1e-3)

• minDeg (int) – minimum spline degree (default: 1)

• maxDeg (int) – maximum spline degree (default: 3)

• smoothing (Optional[Tuple[float, float, float]]) – optional parameters for
the variational smoothing algorithm (default: (1,1,1))

Returns
a Workplane object with the current point unchanged

Return type
T

This method might be unstable and may require tuning of the tol parameter.

placeSketch(*sketches: Sketch)→ T
Place the provided sketch(es) based on the current items on the stack.

Returns
Workplane object with the sketch added.

Parameters

• self (T) –

• sketches (Sketch) –

Return type
T

polarArray(radius: float, startAngle: float, angle: float, count: int, fill: bool = True, rotate: bool = True)→
T

Creates a polar array of points and pushes them onto the stack. The zero degree reference angle is located
along the local X-axis.

Parameters

• self (T) –

182 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• radius (float) – Radius of the array.

• startAngle (float) – Starting angle (degrees) of array. Zero degrees is situated along
the local X-axis.

• angle (float) – The angle (degrees) to fill with elements. A positive value will fill in the
counter-clockwise direction. If fill is False, angle is the angle between elements.

• count (int) – Number of elements in array. (count >= 1)

• fill (bool) – Interpret the angle as total if True (default: True).

• rotate (bool) – Rotate every item (default: True).

Return type
T

polarLine(distance: float, angle: float, forConstruction: bool = False)→ T
Make a line of the given length, at the given angle from the current point

Parameters

• self (T) –

• distance (float) – distance of the end of the line from the current point

• angle (float) – angle of the vector to the end of the line with the x-axis

• forConstruction (bool) –

Returns
the Workplane object with the current point at the end of the new line

Return type
T

polarLineTo(distance: float, angle: float, forConstruction: bool = False)→ T
Make a line from the current point to the given polar coordinates

Useful if it is more convenient to specify the end location rather than the distance and angle from the current
point

Parameters

• self (T) –

• distance (float) – distance of the end of the line from the origin

• angle (float) – angle of the vector to the end of the line with the x-axis

• forConstruction (bool) –

Returns
the Workplane object with the current point at the end of the new line

Return type
T

polygon(nSides: int, diameter: float, forConstruction: bool = False, circumscribed: bool = False)→ T
Make a polygon for each item on the stack.

By default, each polygon is created by inscribing it in a circle of the specified diameter, such that the
first vertex is oriented in the x direction. Alternatively, each polygon can be created by circumscribing
it around a circle of the specified diameter, such that the midpoint of the first edge is oriented in the x
direction. Circumscribed polygons are thus rotated by pi/nSides radians relative to the inscribed polygon.

3.12. CadQuery Class Summary 183

CadQuery Documentation, Release 2.4.0

This ensures the extent of the polygon along the positive x-axis is always known. This has the advantage of
not requiring additional formulae for purposes such as tiling on the x-axis (at least for even sided polygons).

Parameters

• self (T) –

• nSides (int) – number of sides, must be >= 3

• diameter (float) – the diameter of the circle for constructing the polygon

• circumscribed (true to create the polygon by circumscribing it about
a circle, false to create the polygon by inscribing it in a circle) –
circumscribe the polygon about a circle

• forConstruction (bool) –

Returns
a polygon wire

Return type
T

polyline(listOfXYTuple: Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]],
forConstruction: bool = False, includeCurrent: bool = False)→ T

Create a polyline from a list of points

Parameters

• self (T) –

• listOfXYTuple (Sequence[Union[Tuple[float, float], Tuple[float,
float, float], Vector]]) – a list of points in Workplane coordinates (2D or 3D)

• forConstruction (true if the edges are for reference, false if they
are for creating geometry part geometry) – whether or not the edges are used
for reference

• includeCurrent (bool) – use current point as a starting point of the polyline

Returns
a new CQ object with a list of edges on the stack

Return type
T

NOTE most commonly, the resulting wire should be closed.

pushPoints(pntList: Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector, Location]])→ T
Pushes a list of points onto the stack as vertices. The points are in the 2D coordinate space of the workplane
face

Parameters

• self (T) –

• pntList (list of 2-tuples, in local coordinates) – a list of points to push onto the stack

Returns
a new workplane with the desired points on the stack.

Return type
T

184 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

A common use is to provide a list of points for a subsequent operation, such as creating circles or holes.
This example creates a cube, and then drills three holes through it, based on three points:

s = (
Workplane()
.box(1, 1, 1)
.faces(">Z")
.workplane()
.pushPoints([(-0.3, 0.3), (0.3, 0.3), (0, 0)])

)
body = s.circle(0.05).cutThruAll()

Here the circle function operates on all three points, and is then extruded to create three holes. See
circle() for how it works.

radiusArc(endPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], radius: float,
forConstruction: bool = False)→ T

Draw an arc from the current point to endPoint with an arc defined by the radius.

Parameters

• self (T) –

• endPoint (2-tuple, in workplane coordinates) – end point for the arc

• radius (float, the radius of the arc between start point and end
point.) – the radius of the arc

• forConstruction (bool) –

Returns
a workplane with the current point at the end of the arc

Return type
T

Given that a closed contour is drawn clockwise; A positive radius means convex arc and negative radius
means concave arc.

rarray(xSpacing: float, ySpacing: float, xCount: int, yCount: int, center: Union[bool, Tuple[bool, bool]] =
True)→ T

Creates an array of points and pushes them onto the stack. If you want to position the array at another point,
create another workplane that is shifted to the position you would like to use as a reference

Parameters

• self (T) –

• xSpacing (float) – spacing between points in the x direction (must be > 0)

• ySpacing (float) – spacing between points in the y direction (must be > 0)

• xCount (int) – number of points (> 0)

• yCount (int) – number of points (> 0)

• center (Union[bool, Tuple[bool, bool]]) – If True, the array will be centered
around the workplane center. If False, the lower corner will be on the reference point and
the array will extend in the positive x and y directions. Can also use a 2-tuple to specify
centering along each axis.

Return type
T

3.12. CadQuery Class Summary 185

CadQuery Documentation, Release 2.4.0

rect(xLen: float, yLen: float, centered: Union[bool, Tuple[bool, bool]] = True, forConstruction: bool =
False)→ T

Make a rectangle for each item on the stack.

Parameters

• self (T) –

• xLen (float) – length in the x direction (in workplane coordinates)

• yLen (float) – length in the y direction (in workplane coordinates)

• centered (Union[bool, Tuple[bool, bool]]) – If True, the rectangle will be cen-
tered around the reference point. If False, the corner of the rectangle will be on the reference
point and it will extend in the positive x and y directions. Can also use a 2-tuple to specify
centering along each axis.

• forConstruction (true if the wires are for reference, false if they
are creating part geometry) – should the new wires be reference geometry only?

Returns
a new CQ object with the created wires on the stack

Return type
T

A common use case is to use a for-construction rectangle to define the centers of a hole pattern:

s = Workplane().rect(4.0, 4.0, forConstruction=True).vertices().circle(0.25)

Creates 4 circles at the corners of a square centered on the origin.

Negative values for xLen and yLen are permitted, although they only have an effect when centered is False.

Future Enhancements:

• project points not in the workplane plane onto the workplane plane

revolve(angleDegrees: float = 360.0, axisStart: Optional[Union[Tuple[float, float], Tuple[float, float, float],
Vector]] = None, axisEnd: Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]] =
None, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True)→ T

Use all un-revolved wires in the parent chain to create a solid.

Parameters

• self (T) –

• angleDegrees (float, anything less than 360 degrees will leave the
shape open) – the angle to revolve through.

• axisStart (Optional[Union[Tuple[float, float], Tuple[float, float,
float], Vector]]) – the start point of the axis of rotation

• axisEnd (Optional[Union[Tuple[float, float], Tuple[float, float,
float], Vector]]) – the end point of the axis of rotation

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

Returns
a CQ object with the resulting solid selected.

186 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Return type
T

The returned object is always a CQ object, and depends on whether combine is True, and whether a context
solid is already defined:

• if combine is False, the new value is pushed onto the stack.

• if combine is true, the value is combined with the context solid if it exists, and the resulting solid
becomes the new context solid.

Note: Keep in mind that axisStart and axisEnd are defined relative to the current Workplane center posi-
tion. So if for example you want to revolve a circle centered at (10,0,0) around the Y axis, be sure to either
move() (or moveTo()) the current Workplane position or specify axisStart and axisEnd with the correct
vector position. In this example (0,0,0), (0,1,0) as axis coords would fail.

rotate(axisStartPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], axisEndPoint:
Union[Tuple[float, float], Tuple[float, float, float], Vector], angleDegrees: float)→ T

Returns a copy of all of the items on the stack rotated through and angle around the axis of rotation.

Parameters

• self (T) –

• axisStartPoint (a 3-tuple of floats) – The first point of the axis of rotation

• axisEndPoint (a 3-tuple of floats) – The second point of the axis of rotation

• angleDegrees (float) – the rotation angle, in degrees

Returns
a CQ object

Return type
T

rotateAboutCenter(axisEndPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector],
angleDegrees: float)→ T

Rotates all items on the stack by the specified angle, about the specified axis

The center of rotation is a vector starting at the center of the object on the stack, and ended at the specified
point.

Parameters

• self (T) –

• axisEndPoint (a three-tuple in global coordinates) – the second point of axis
of rotation

• angleDegrees (float) – the rotation angle, in degrees

Returns
a CQ object, with all items rotated.

Return type
T

WARNING: This version returns the same CQ object instead of a new one– the old object is not accessible.

Future Enhancements:

• A version of this method that returns a transformed copy, rather than modifying the originals

3.12. CadQuery Class Summary 187

CadQuery Documentation, Release 2.4.0

• This method doesn’t expose a very good interface, because the axis of rotation could be inconsis-
tent between multiple objects. This is because the beginning of the axis is variable, while the end
is fixed. This is fine when operating on one object, but is not cool for multiple.

sagittaArc(endPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], sag: float,
forConstruction: bool = False)→ T

Draw an arc from the current point to endPoint with an arc defined by the sag (sagitta).

Parameters

• self (T) –

• endPoint (2-tuple, in workplane coordinates) – end point for the arc

• sag (float, perpendicular distance from arc center to arc baseline.) –
the sagitta of the arc

• forConstruction (bool) –

Returns
a workplane with the current point at the end of the arc

Return type
T

The sagitta is the distance from the center of the arc to the arc base. Given that a closed contour is drawn
clockwise; A positive sagitta means convex arc and negative sagitta means concave arc. See https://en.
wikipedia.org/wiki/Sagitta_(geometry) for more information.

section(height: float = 0.0)→ T
Slices current solid at the given height.

Parameters

• self (T) –

• height (float) – height to slice at (default: 0)

Raises
ValueError – if no solids or compounds are found

Returns
a CQ object with the resulting face(s).

Return type
T

shell(thickness: float, kind: Literal['arc', 'intersection'] = 'arc')→ T
Remove the selected faces to create a shell of the specified thickness.

To shell, first create a solid, and in the same chain select the faces you wish to remove.

Parameters

• self (T) –

• thickness (float) – thickness of the desired shell. Negative values shell inwards, posi-
tive values shell outwards.

• kind (Literal['arc', 'intersection']) – kind of join, arc or intersection (default:
arc).

Raises
ValueError – if the current stack contains objects that are not faces of a solid further up in
the chain.

188 Chapter 3. Table Of Contents

https://en.wikipedia.org/wiki/Sagitta_(geometry)
https://en.wikipedia.org/wiki/Sagitta_(geometry)

CadQuery Documentation, Release 2.4.0

Returns
a CQ object with the resulting shelled solid selected.

Return type
T

This example will create a hollowed out unit cube, where the top most face is open, and all other walls are
0.2 units thick:

Workplane().box(1, 1, 1).faces("+Z").shell(0.2)

You can also select multiple faces at once. Here is an example that creates a three-walled corner, by remov-
ing three faces of a cube:

Workplane().box(10, 10, 10).faces(">Z or >X or <Y").shell(1)

Note: When sharp edges are shelled inwards, they remain sharp corners, but outward shells are automati-
cally filleted (unless kind=”intersection”), because an outward offset from a corner generates a radius.

shells(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select the shells of objects on the stack, optionally filtering the selection. If there are multiple objects on
the stack, the shells of all objects are collected and a list of all the distinct shells is returned.

Parameters

• self (T) –

• selector (Optional[Union[str, Selector]]) – optional Selector object, or string
selector expression (see StringSyntaxSelector)

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a CQ object whose stack contains all of the distinct shells of all objects on the current stack,
filtered by the provided selector.

Return type
T

If there are no shells for any objects on the current stack, an empty CQ object is returned

Most solids will have a single shell, which represents the outer surface. A shell will typically be composed
of multiple faces.

siblings(kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound'], level: int =
1, tag: Optional[str] = None)→ T

Select topological siblings.

Parameters

• self (T) –

• kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid',
'CompSolid', 'Compound']) – kind of linking element, e.g. “Vertex” or “Edge”

• level (int) – level of relation - how many elements of kind are in the link

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a Workplane object whose stack contains selected siblings.

3.12. CadQuery Class Summary 189

CadQuery Documentation, Release 2.4.0

Return type
T

size()→ int
Return the number of objects currently on the stack

Return type
int

sketch()→ Sketch
Initialize and return a sketch

Returns
Sketch object with the current workplane as a parent.

Parameters
self (T) –

Return type
Sketch

slot2D(length: float, diameter: float, angle: float = 0)→ T
Creates a rounded slot for each point on the stack.

Parameters

• self (T) –

• diameter (float) – desired diameter, or width, of slot

• length (float) – desired end to end length of slot

• angle (float) – angle of slot in degrees, with 0 being along x-axis

Returns
a new CQ object with the created wires on the stack

Return type
T

Can be used to create arrays of slots, such as in cooling applications:

Workplane().box(10, 25, 1).rarray(1, 2, 1, 10).slot2D(8, 1, 0).cutThruAll()

solids(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select the solids of objects on the stack, optionally filtering the selection. If there are multiple objects on
the stack, the solids of all objects are collected and a list of all the distinct solids is returned.

Parameters

• self (T) –

• selector (Optional[Union[str, Selector]]) – optional Selector object, or string
selector expression (see StringSyntaxSelector)

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a CQ object whose stack contains all of the distinct solids of all objects on the current stack,
filtered by the provided selector.

Return type
T

190 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

If there are no solids for any objects on the current stack, an empty CQ object is returned

The typical use is to select a single object on the stack. For example:

Workplane().box(1, 1, 1).solids().size()

returns 1, because a cube consists of one solid.

It is possible for a single CQ object (or even a single CAD primitive) to contain multiple solids.

sphere(radius: float, direct: Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 1), angle1:
float = - 90, angle2: float = 90, angle3: float = 360, centered: Union[bool, Tuple[bool, bool, bool]] =
True, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True)→ T

Returns a 3D sphere with the specified radius for each point on the stack.

Parameters

• self (T) –

• radius (float) – The radius of the sphere

• direct (A three-tuple) – The direction axis for the creation of the sphere

• angle1 (float > 0) – The first angle to sweep the sphere arc through

• angle2 (float > 0) – The second angle to sweep the sphere arc through

• angle3 (float > 0) – The third angle to sweep the sphere arc through

• centered (Union[bool, Tuple[bool, bool, bool]]) – If True, the sphere will be
centered around the reference point. If False, the corner of a bounding box around the
sphere will be on the reference point and it will extend in the positive x, y and z directions.
Can also use a 3-tuple to specify centering along each axis.

• combine (true to combine shapes, false otherwise) – Whether the results
should be combined with other solids on the stack (and each other)

• clean (bool) – call clean() afterwards to have a clean shape

Returns
A sphere object for each point on the stack

Return type
T

One sphere is created for each item on the current stack. If no items are on the stack, one box using the
current workplane center is created.

If combine is true, the result will be a single object on the stack. If a solid was found in the chain, the
result is that solid with all spheres produced fused onto it otherwise, the result is the combination of all the
produced spheres.

If combine is false, the result will be a list of the spheres produced.

spline(listOfXYTuple: Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]], tangents:
Optional[Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]]] = None, periodic:
bool = False, parameters: Optional[Sequence[float]] = None, scale: bool = True, tol: Optional[float]
= None, forConstruction: bool = False, includeCurrent: bool = False, makeWire: bool = False)→ T

Create a spline interpolated through the provided points (2D or 3D).

Parameters

• self (T) –

3.12. CadQuery Class Summary 191

CadQuery Documentation, Release 2.4.0

• listOfXYTuple (Iterable[Union[Tuple[float, float], Tuple[float,
float, float], Vector]]) – points to interpolate through

• tangents (Optional[Sequence[Union[Tuple[float, float], Tuple[float,
float, float], Vector]]]) – vectors specifying the direction of the tangent to the
curve at each of the specified interpolation points.

If only 2 tangents are given, they will be used as the initial and final tangent.

If some tangents are not specified (i.e., are None), no tangent constraint will be applied to
the corresponding interpolation point.

The spline will be C2 continuous at the interpolation points where no tangent constraint is
specified, and C1 continuous at the points where a tangent constraint is specified.

• periodic (bool) – creation of periodic curves

• parameters (Optional[Sequence[float]]) – the value of the parameter at each in-
terpolation point. (The interpolated curve is represented as a vector-valued function of a
scalar parameter.)

If periodic == True, then len(parameters) must be len(interpolation points) + 1, otherwise
len(parameters) must be equal to len(interpolation points).

• scale (bool) – whether to scale the specified tangent vectors before interpolating.

Each tangent is scaled, so it’s length is equal to the derivative of the Lagrange interpolated
curve.

I.e., set this to True, if you want to use only the direction of the tangent vectors specified
by tangents, but not their magnitude.

• tol (Optional[float]) – tolerance of the algorithm (consult OCC documentation)

Used to check that the specified points are not too close to each other, and that tangent
vectors are not too short. (In either case interpolation may fail.)

Set to None to use the default tolerance.

• includeCurrent (bool) – use current point as a starting point of the curve

• makeWire (bool) – convert the resulting spline edge to a wire

• forConstruction (bool) –

Returns
a Workplane object with the current point at the end of the spline

Return type
T

The spline will begin at the current point, and end with the last point in the XY tuple list.

This example creates a block with a spline for one side:

s = Workplane(Plane.XY())
sPnts = [

(2.75, 1.5),
(2.5, 1.75),
(2.0, 1.5),
(1.5, 1.0),
(1.0, 1.25),
(0.5, 1.0),

(continues on next page)

192 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

(0, 1.0),
]
r = s.lineTo(3.0, 0).lineTo(3.0, 1.0).spline(sPnts).close()
r = r.extrude(0.5)

WARNING It is fairly easy to create a list of points that cannot be correctly interpreted as a spline.

splineApprox(points: Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]], tol:
Optional[float] = 1e-06, minDeg: int = 1, maxDeg: int = 6, smoothing: Optional[Tuple[float,
float, float]] = (1, 1, 1), forConstruction: bool = False, includeCurrent: bool = False,
makeWire: bool = False)→ T

Create a spline interpolated through the provided points (2D or 3D).

Parameters

• self (T) –

• points (Iterable[Union[Tuple[float, float], Tuple[float, float,
float], Vector]]) – points to interpolate through

• tol (Optional[float]) – tolerance of the algorithm (default: 1e-6)

• minDeg (int) – minimum spline degree (default: 1)

• maxDeg (int) – maximum spline degree (default: 6)

• smoothing (Optional[Tuple[float, float, float]]) – optional parameters for
the variational smoothing algorithm (default: (1,1,1))

• includeCurrent (bool) – use current point as a starting point of the curve

• makeWire (bool) – convert the resulting spline edge to a wire

• forConstruction (bool) –

Returns
a Workplane object with the current point at the end of the spline

Return type
T

WARNING for advanced users.

split(keepTop: bool = False, keepBottom: bool = False)→ T
split(splitter: Union[T, Shape])→ T

Splits a solid on the stack into two parts, optionally keeping the separate parts.

Parameters

• self –

• keepTop (bool) – True to keep the top, False or None to discard it

• keepBottom (bool) – True to keep the bottom, False or None to discard it

Raises

• ValueError – if keepTop and keepBottom are both false.

• ValueError – if there is no solid in the current stack or parent chain

Returns
CQ object with the desired objects on the stack.

3.12. CadQuery Class Summary 193

CadQuery Documentation, Release 2.4.0

The most common operation splits a solid and keeps one half. This sample creates a split bushing:

drill a hole in the side
c = Workplane().box(1, 1, 1).faces(">Z").workplane().circle(0.25).cutThruAll()

now cut it in half sideways
c = c.faces(">Y").workplane(-0.5).split(keepTop=True)

sweep(path: Union[Workplane, Wire, Edge], multisection: bool = False, sweepAlongWires: Optional[bool]
= None, makeSolid: bool = True, isFrenet: bool = False, combine: Union[bool, Literal['cut', 'a', 's']] =
True, clean: bool = True, transition: Literal['right', 'round', 'transformed'] = 'right', normal:
Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]] = None, auxSpine:
Optional[Workplane] = None)→ T

Use all un-extruded wires in the parent chain to create a swept solid.

Parameters

• self (T) –

• path (Union[Workplane, Wire, Edge]) – A wire along which the pending wires will
be swept

• multiSection – False to create multiple swept from wires on the chain along path. True
to create only one solid swept along path with shape following the list of wires on the chain

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

• transition (Literal['right', 'round', 'transformed']) – handling of profile ori-
entation at C1 path discontinuities. Possible values are {‘transformed’,’round’, ‘right’}
(default: ‘right’).

• normal (Optional[Union[Tuple[float, float], Tuple[float, float,
float], Vector]]) – optional fixed normal for extrusion

• auxSpine (Optional[Workplane]) – a wire defining the binormal along the extrusion
path

• multisection (bool) –

• sweepAlongWires (Optional[bool]) –

• makeSolid (bool) –

• isFrenet (bool) –

Returns
a CQ object with the resulting solid selected.

Return type
T

tag(name: str)→ T
Tags the current CQ object for later reference.

Parameters

• self (T) –

• name (str) – the name to tag this object with

194 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Returns
self, a CQ object with tag applied

Return type
T

tangentArcPoint(endpoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], forConstruction:
bool = False, relative: bool = True)→ T

Draw an arc as a tangent from the end of the current edge to endpoint.

Parameters

• self (T) –

• endpoint (2-tuple, 3-tuple or Vector) – point for the arc to end at

• relative (bool) – True if endpoint is specified relative to the current point, False if end-
point is in workplane coordinates

• forConstruction (bool) –

Returns
a Workplane object with an arc on the stack

Return type
T

Requires the the current first object on the stack is an Edge, as would be the case after a lineTo operation
or similar.

text(txt: str, fontsize: float, distance: float, cut: bool = True, combine: Union[bool, Literal['cut', 'a', 's']] =
False, clean: bool = True, font: str = 'Arial', fontPath: Optional[str] = None, kind: Literal['regular',
'bold', 'italic'] = 'regular', halign: Literal['center', 'left', 'right'] = 'center', valign: Literal['center', 'top',
'bottom'] = 'center')→ T

Returns a 3D text.

Parameters

• self (T) –

• txt (str) – text to be rendered

• fontsize (float) – size of the font in model units

• distance (float, negative means opposite the normal direction) – the dis-
tance to extrude or cut, normal to the workplane plane

• cut (bool) – True to cut the resulting solid from the parent solids if found

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

• font (str) – font name

• fontPath (Optional[str]) – path to font file

• kind (Literal['regular', 'bold', 'italic']) – font type

• halign (Literal['center', 'left', 'right']) – horizontal alignment

• valign (Literal['center', 'top', 'bottom']) – vertical alignment

3.12. CadQuery Class Summary 195

CadQuery Documentation, Release 2.4.0

Returns
a CQ object with the resulting solid selected

Return type
T

The returned object is always a Workplane object, and depends on whether combine is True, and whether
a context solid is already defined:

• if combine is False, the new value is pushed onto the stack.

• if combine is true, the value is combined with the context solid if it exists, and the resulting solid
becomes the new context solid.

Examples:

cq.Workplane().text("CadQuery", 5, 1)

Specify the font (name), and kind to use an installed system font:

cq.Workplane().text("CadQuery", 5, 1, font="Liberation Sans Narrow", kind=
→˓"italic")

Specify fontPath to use a font from a given file:

cq.Workplane().text("CadQuery", 5, 1, fontPath="/opt/fonts/texgyrecursor-bold.
→˓otf")

Cutting text into a solid:

cq.Workplane().box(8, 8, 8).faces(">Z").workplane().text("Z", 5, -1.0)

threePointArc(point1: Union[Tuple[float, float], Tuple[float, float, float], Vector], point2:
Union[Tuple[float, float], Tuple[float, float, float], Vector], forConstruction: bool = False)
→ T

Draw an arc from the current point, through point1, and ending at point2

Parameters

• self (T) –

• point1 (2-tuple, in workplane coordinates) – point to draw through

• point2 (2-tuple, in workplane coordinates) – end point for the arc

• forConstruction (bool) –

Returns
a workplane with the current point at the end of the arc

Return type
T

Future Enhancements:
provide a version that allows an arc using relative measures provide a centerpoint arc provide tangent
arcs

toOCC()→ Any
Directly returns the wrapped OCCT object.

196 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Returns
The wrapped OCCT object

Return type
TopoDS_Shape or a subclass

toPending()→ T
Adds wires/edges to pendingWires/pendingEdges.

Returns
same CQ object with updated context.

Parameters
self (T) –

Return type
T

toSvg(opts: Any = None)→ str
Returns svg text that represents the first item on the stack.

for testing purposes.

Parameters
opts (dictionary, width and height) – svg formatting options

Returns
a string that contains SVG that represents this item.

Return type
str

transformed(rotate: Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 0), offset:
Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 0))→ T

Create a new workplane based on the current one. The origin of the new plane is located at the existing
origin+offset vector, where offset is given in coordinates local to the current plane The new plane is rotated
through the angles specified by the components of the rotation vector.

Parameters

• self (T) –

• rotate (Union[Tuple[float, float], Tuple[float, float, float],
Vector]) – 3-tuple of angles to rotate, in degrees relative to work plane coordinates

• offset (Union[Tuple[float, float], Tuple[float, float, float],
Vector]) – 3-tuple to offset the new plane, in local work plane coordinates

Returns
a new work plane, transformed as requested

Return type
T

translate(vec: Union[Tuple[float, float], Tuple[float, float, float], Vector])→ T
Returns a copy of all of the items on the stack moved by the specified translation vector.

Parameters

• self (T) –

• tupleDistance (a 3-tuple of float) – distance to move, in global coordinates

3.12. CadQuery Class Summary 197

CadQuery Documentation, Release 2.4.0

• vec (Union[Tuple[float, float], Tuple[float, float, float], Vector])
–

Returns
a CQ object

Return type
T

twistExtrude(distance: float, angleDegrees: float, combine: Union[bool, Literal['cut', 'a', 's']] = True,
clean: bool = True)→ T

Extrudes a wire in the direction normal to the plane, but also twists by the specified angle over the length
of the extrusion.

The center point of the rotation will be the center of the workplane.

See extrude for more details, since this method is the same except for the the addition of the angle. In fact,
if angle=0, the result is the same as a linear extrude.

NOTE This method can create complex calculations, so be careful using it with complex geometries

Parameters

• self (T) –

• distance (float) – the distance to extrude normal to the workplane

• angle – angle (in degrees) to rotate through the extrusion

• combine (Union[bool, Literal['cut', 'a', 's']]) – True or “a” to combine the re-
sulting solid with parent solids if found, “cut” or “s” to remove the resulting solid from the
parent solids if found. False to keep the resulting solid separated from the parent solids.

• clean (bool) – call clean() afterwards to have a clean shape

• angleDegrees (float) –

Returns
a CQ object with the resulting solid selected.

Return type
T

union(toUnion: Optional[Union[Workplane, Solid, Compound]] = None, clean: bool = True, glue: bool =
False, tol: Optional[float] = None)→ T

Unions all of the items on the stack of toUnion with the current solid. If there is no current solid, the items
in toUnion are unioned together.

Parameters

• self (T) –

• toUnion (Optional[Union[Workplane, Solid, Compound]]) – a solid object, or a
Workplane object having a solid

• clean (bool) – call clean() afterwards to have a clean shape (default True)

• glue (bool) – use a faster gluing mode for non-overlapping shapes (default False)

• tol (Optional[float]) – tolerance value for fuzzy bool operation mode (default None)

Raises
ValueError if there is no solid to add to in the chain

198 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Returns
a Workplane object with the resulting object selected

Return type
T

vLine(distance: float, forConstruction: bool = False)→ T
Make a vertical line from the current point the provided distance

Parameters

• self (T) –

• distance (float) –

(y) distance from current point

• forConstruction (bool) –

Returns
the Workplane object with the current point at the end of the new line

Return type
T

vLineTo(yCoord: float, forConstruction: bool = False)→ T
Make a vertical line from the current point to the provided y coordinate.

Useful if it is more convenient to specify the end location rather than distance, as in vLine()

Parameters

• self (T) –

• yCoord (float) – y coordinate for the end of the line

• forConstruction (bool) –

Returns
the Workplane object with the current point at the end of the new line

Return type
T

val()→ Union[Vector, Location, Shape, Sketch]
Return the first value on the stack. If no value is present, current plane origin is returned.

Returns
the first value on the stack.

Return type
A CAD primitive

vals()→ List[Union[Vector, Location, Shape, Sketch]]
get the values in the current list

Return type
list of occ_impl objects

Returns
the values of the objects on the stack.

Contrast with all(), which returns CQ objects for all of the items on the stack

3.12. CadQuery Class Summary 199

CadQuery Documentation, Release 2.4.0

vertices(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select the vertices of objects on the stack, optionally filtering the selection. If there are multiple objects on
the stack, the vertices of all objects are collected and a list of all the distinct vertices is returned.

Parameters

• self (T) –

• selector (Optional[Union[str, Selector]]) – optional Selector object, or string
selector expression (see StringSyntaxSelector)

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a CQ object whose stack contains the distinct vertices of all objects on the current stack, after
being filtered by the selector, if provided

Return type
T

If there are no vertices for any objects on the current stack, an empty CQ object is returned

The typical use is to select the vertices of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").vertices().size()

returns 4, because the topmost face of a cube will contain four vertices. While this:

Workplane().box(1, 1, 1).faces().vertices().size()

returns 8, because a cube has a total of 8 vertices

Note Circles are peculiar, they have a single vertex at the center!

wedge(dx: float, dy: float, dz: float, xmin: float, zmin: float, xmax: float, zmax: float, pnt:
~typing.Union[~typing.Tuple[float, float], ~typing.Tuple[float, float, float],
~cadquery.occ_impl.geom.Vector] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~typing.Tuple[float,
float], ~typing.Tuple[float, float, float], ~cadquery.occ_impl.geom.Vector] = Vector: (0.0, 0.0, 1.0),
centered: ~typing.Union[bool, ~typing.Tuple[bool, bool, bool]] = True, combine: ~typing.Union[bool,
~typing.Literal['cut', 'a', 's']] = True, clean: bool = True)→ T

Returns a 3D wedge with the specified dimensions for each point on the stack.

Parameters

• self (T) –

• dx (float) – Distance along the X axis

• dy (float) – Distance along the Y axis

• dz (float) – Distance along the Z axis

• xmin (float) – The minimum X location

• zmin (float) – The minimum Z location

• xmax (float) – The maximum X location

• zmax (float) – The maximum Z location

• pnt (Union[Tuple[float, float], Tuple[float, float, float], Vector])
– A vector (or tuple) for the origin of the direction for the wedge

200 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• dir (Union[Tuple[float, float], Tuple[float, float, float], Vector])
– The direction vector (or tuple) for the major axis of the wedge

• centered (Union[bool, Tuple[bool, bool, bool]]) – If True, the wedge will be
centered around the reference point. If False, the corner of the wedge will be on the refer-
ence point and it will extend in the positive x, y and z directions. Can also use a 3-tuple to
specify centering along each axis.

• combine (Union[bool, Literal['cut', 'a', 's']]) – Whether the results should be
combined with other solids on the stack (and each other)

• clean (bool) – True to attempt to have the kernel clean up the geometry, False otherwise

Returns
A wedge object for each point on the stack

Return type
T

One wedge is created for each item on the current stack. If no items are on the stack, one wedge using the
current workplane center is created.

If combine is True, the result will be a single object on the stack. If a solid was found in the chain, the
result is that solid with all wedges produced fused onto it otherwise, the result is the combination of all the
produced wedges.

If combine is False, the result will be a list of the wedges produced.

wire(forConstruction: bool = False)→ T
Returns a CQ object with all pending edges connected into a wire.

All edges on the stack that can be combined will be combined into a single wire object, and other objects
will remain on the stack unmodified. If there are no pending edges, this method will just return self.

Parameters

• self (T) –

• forConstruction (bool) – whether the wire should be used to make a solid, or if it is
just for reference

Return type
T

This method is primarily of use to plugin developers making utilities for 2D construction. This method
should be called when a user operation implies that 2D construction is finished, and we are ready to begin
working in 3d.

SEE ‘2D construction concepts’ for a more detailed explanation of how CadQuery handles edges, wires,
etc.

Any non edges will still remain.

wires(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None)→ T
Select the wires of objects on the stack, optionally filtering the selection. If there are multiple objects on
the stack, the wires of all objects are collected and a list of all the distinct wires is returned.

Parameters

• self (T) –

• selector (Optional[Union[str, Selector]]) – optional Selector object, or string
selector expression (see StringSyntaxSelector)

3.12. CadQuery Class Summary 201

CadQuery Documentation, Release 2.4.0

• tag (Optional[str]) – if set, search the tagged object instead of self

Returns
a CQ object whose stack contains all of the distinct wires of all objects on the current stack,
filtered by the provided selector.

Return type
T

If there are no wires for any objects on the current stack, an empty CQ object is returned

The typical use is to select the wires of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").wires().size()

returns 1, because a face typically only has one outer wire

workplane(offset: float = 0.0, invert: bool = False, centerOption: Literal['CenterOfMass', 'ProjectedOrigin',
'CenterOfBoundBox'] = 'ProjectedOrigin', origin: Optional[Union[Tuple[float, float],
Tuple[float, float, float], Vector]] = None)→ T

Creates a new 2D workplane, located relative to the first face on the stack.

Parameters

• self (T) –

• offset (float) – offset for the workplane in its normal direction . Default

• invert (bool) – invert the normal direction from that of the face.

• centerOption (string or None='ProjectedOrigin') – how local origin of work-
plane is determined.

• origin (Optional[Union[Tuple[float, float], Tuple[float, float,
float], Vector]]) – origin for plane center, requires ‘ProjectedOrigin’ centerOption.

Return type
Workplane object

The first element on the stack must be a face, a set of co-planar faces or a vertex. If a vertex, then the parent
item on the chain immediately before the vertex must be a face.

The result will be a 2D working plane with a new coordinate system set up as follows:

• The centerOption parameter sets how the center is defined. Options are ‘CenterOfMass’, ‘CenterOf-
BoundBox’, or ‘ProjectedOrigin’. ‘CenterOfMass’ and ‘CenterOfBoundBox’ are in relation to the se-
lected face(s) or vertex (vertices). ‘ProjectedOrigin’ uses by default the current origin or the optional
origin parameter (if specified) and projects it onto the plane defined by the selected face(s).

• The Z direction will be the normal of the face, computed at the center point.

• The X direction will be parallel to the x-y plane. If the workplane is parallel to the global x-y plane,
the x direction of the workplane will co-incide with the global x direction.

Most commonly, the selected face will be planar, and the workplane lies in the same plane of the face (IE,
offset=0). Occasionally, it is useful to define a face offset from an existing surface, and even more rarely to
define a workplane based on a face that is not planar.

workplaneFromTagged(name: str)→ Workplane
Copies the workplane from a tagged parent.

Parameters
name (str) – tag to search for

202 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Returns
a CQ object with name’s workplane

Return type
Workplane

cadquery.sortWiresByBuildOrder(wireList: List[Wire])→ List[List[Wire]]
Tries to determine how wires should be combined into faces.

Assume:
The wires make up one or more faces, which could have ‘holes’ Outer wires are listed ahead of inner wires
there are no wires inside wires inside wires (IE, islands – we can deal with that later on) none of the wires
are construction wires

Compute:
one or more sets of wires, with the outer wire listed first, and inner ones

Returns, list of lists.

Parameters
wireList (List[Wire]) –

Return type
List[List[Wire]]

class cadquery.occ_impl.shapes.Mixin1D

Bases: object

endPoint()→ Vector

Returns
a vector representing the end point of this edge.

Parameters
self (Mixin1DProtocol) –

Return type
Vector

Note, circles may have the start and end points the same

locationAt(d: float, mode: Literal['length', 'parameter'] = 'length', frame: Literal['frenet', 'corrected'] =
'frenet', planar: bool = False)→ Location

Generate a location along the underlying curve.

Parameters

• self (Mixin1DProtocol) –

• d (float) – distance or parameter value

• mode (Literal['length', 'parameter']) – position calculation mode (default: length)

• frame (Literal['frenet', 'corrected']) – moving frame calculation method (default:
frenet)

• planar (bool) – planar mode

Returns
A Location object representing local coordinate system at the specified distance.

Return type
Location

3.12. CadQuery Class Summary 203

CadQuery Documentation, Release 2.4.0

locations(ds: Iterable[float], mode: Literal['length', 'parameter'] = 'length', frame: Literal['frenet',
'corrected'] = 'frenet', planar: bool = False)→ List[Location]

Generate location along the curve

Parameters

• self (Mixin1DProtocol) –

• ds (Iterable[float]) – distance or parameter values

• mode (Literal['length', 'parameter']) – position calculation mode (default: length)

• frame (Literal['frenet', 'corrected']) – moving frame calculation method (default:
frenet)

• planar (bool) – planar mode

Returns
A list of Location objects representing local coordinate systems at the specified distances.

Return type
List[Location]

normal()→ Vector
Calculate the normal Vector. Only possible for planar curves.

Returns
normal vector

Parameters
self (Mixin1DProtocol) –

Return type
Vector

paramAt(d: float)→ float
Compute parameter value at the specified normalized distance.

Parameters

• self (Mixin1DProtocol) –

• d (float) – normalized distance [0, 1]

Returns
parameter value

Return type
float

positionAt(d: float, mode: Literal['length', 'parameter'] = 'length')→ Vector
Generate a position along the underlying curve.

Parameters

• self (Mixin1DProtocol) –

• d (float) – distance or parameter value

• mode (Literal['length', 'parameter']) – position calculation mode (default: length)

Returns
A Vector on the underlying curve located at the specified d value.

204 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Return type
Vector

positions(ds: Iterable[float], mode: Literal['length', 'parameter'] = 'length')→ List[Vector]
Generate positions along the underlying curve

Parameters

• self (Mixin1DProtocol) –

• ds (Iterable[float]) – distance or parameter values

• mode (Literal['length', 'parameter']) – position calculation mode (default: length)

Returns
A list of Vector objects.

Return type
List[Vector]

project(face: Face, d: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float],
Union[int, float], Union[int, float]]], closest: bool = True)→ Union[T1D, List[T1D]]

Project onto a face along the specified direction

Parameters

• self (T1D) –

• face (Face) –

• d (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]])
–

• closest (bool) –

Return type
Union[T1D, List[T1D]]

radius()→ float
Calculate the radius.

Note that when applied to a Wire, the radius is simply the radius of the first edge.

Returns
radius

Raises
ValueError – if kernel can not reduce the shape to a circular edge

Parameters
self (Mixin1DProtocol) –

Return type
float

startPoint()→ Vector

Returns
a vector representing the start point of this edge

Parameters
self (Mixin1DProtocol) –

3.12. CadQuery Class Summary 205

CadQuery Documentation, Release 2.4.0

Return type
Vector

Note, circles may have the start and end points the same

tangentAt(locationParam: float = 0.5, mode: Literal['length', 'parameter'] = 'length')→ Vector
Compute tangent vector at the specified location.

Parameters

• self (Mixin1DProtocol) –

• locationParam (float) – distance or parameter value (default: 0.5)

• mode (Literal['length', 'parameter']) – position calculation mode (default: param-
eter)

Returns
tangent vector

Return type
Vector

class cadquery.occ_impl.shapes.Mixin3D

Bases: object

chamfer(length: float, length2: Optional[float], edgeList: Iterable[Edge])→ Any
Chamfers the specified edges of this solid.

Parameters

• self (Any) –

• length (float) – length > 0, the length (length) of the chamfer

• length2 (Optional[float]) – length2 > 0, optional parameter for asymmetrical cham-
fer. Should be None if not required.

• edgeList (Iterable[Edge]) – a list of Edge objects, which must belong to this solid

Returns
Chamfered solid

Return type
Any

dprism(basis: Optional[Face], faces: List[Face], depth: Optional[Union[float, int]] = None, taper:
Union[float, int] = 0, upToFace: Optional[Face] = None, thruAll: bool = True, additive: bool =
True)→ Solid

dprism(basis: Optional[Face], profiles: List[Wire], depth: Optional[Union[float, int]] = None, taper:
Union[float, int] = 0, upToFace: Optional[Face] = None, thruAll: bool = True, additive: bool =
True)→ Solid

Make a prismatic feature (additive or subtractive)

Parameters

• self (TS) –

• basis (Optional[Face]) – face to perform the operation on

• profiles (List[Wire]) – list of profiles

• depth (Optional[Union[float, int]]) – depth of the cut or extrusion

• upToFace (Optional[Face]) – a face to extrude until

206 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• thruAll (bool) – cut thruAll

• taper (Union[float, int]) –

• additive (bool) –

Returns
a Solid object

Return type
Solid

fillet(radius: float, edgeList: Iterable[Edge])→ Any
Fillets the specified edges of this solid.

Parameters

• self (Any) –

• radius (float) – float > 0, the radius of the fillet

• edgeList (Iterable[Edge]) – a list of Edge objects, which must belong to this solid

Returns
Filleted solid

Return type
Any

isInside(point: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int,
float], Union[int, float]]], tolerance: float = 1e-06)→ bool

Returns whether or not the point is inside a solid or compound object within the specified tolerance.

Parameters

• self (ShapeProtocol) –

• point (Union[Vector, Tuple[Union[int, float], Union[int, float]],
Tuple[Union[int, float], Union[int, float], Union[int, float]]]) –
tuple or Vector representing 3D point to be tested

• tolerance (float) – tolerance for inside determination, default=1.0e-6

Returns
bool indicating whether or not point is within solid

Return type
bool

shell(faceList: Optional[Iterable[Face]], thickness: float, tolerance: float = 0.0001, kind: Literal['arc',
'intersection'] = 'arc')→ Any

Make a shelled solid of self.

Parameters

• self (Any) –

• faceList (Optional[Iterable[Face]]) – List of faces to be removed, which must be
part of the solid. Can be an empty list.

• thickness (float) – Floating point thickness. Positive shells outwards, negative shells
inwards.

• tolerance (float) – Modelling tolerance of the method, default=0.0001.

• kind (Literal['arc', 'intersection']) –

3.12. CadQuery Class Summary 207

CadQuery Documentation, Release 2.4.0

Returns
A shelled solid.

Return type
Any

Copyright (C) 2011-2015 Parametric Products Intellectual Holdings, LLC

This file is part of CadQuery.

CadQuery is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later
version.

CadQuery is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; If not, see <http:
//www.gnu.org/licenses/>

class cadquery.selectors.AndSelector(left, right)
Bases: BinarySelector

Intersection selector. Returns objects that is selected by both selectors.

class cadquery.selectors.AreaNthSelector(n: int, directionMax: bool = True, tolerance: float = 0.0001)
Bases: _NthSelector

Selects the object(s) with Nth area

Applicability:

• Faces, Shells, Solids - Shape.Area() is used to compute area

• closed planar Wires - a temporary face is created to compute area

Will ignore non-planar or non-closed wires.

Among other things can be used to select one of the nested coplanar wires or faces.

For example to create a fillet on a shank:

result = (
cq.Workplane("XY")
.circle(5)
.extrude(2)
.circle(2)
.extrude(10)
.faces(">Z[-2]")
.wires(AreaNthSelector(0))
.fillet(2)

)

Or to create a lip on a case seam:

result = (
cq.Workplane("XY")
.rect(20, 20)
.extrude(10)
.edges("|Z or <Z")

(continues on next page)

208 Chapter 3. Table Of Contents

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

CadQuery Documentation, Release 2.4.0

(continued from previous page)

.fillet(2)

.faces(">Z")

.shell(2)

.faces(">Z")

.wires(AreaNthSelector(-1))

.toPending()

.workplane()

.offset2D(-1)

.extrude(1)

.faces(">Z[-2]")

.wires(AreaNthSelector(0))

.toPending()

.workplane()

.cutBlind(2)
)

Parameters

• n (int) –

• directionMax (bool) –

• tolerance (float) –

key(obj: Shape)→ float
Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result
in obj being dropped by the clustering method.

Parameters
obj (Shape) –

Return type
float

class cadquery.selectors.BaseDirSelector(vector: Vector, tolerance: float = 0.0001)
Bases: Selector

A selector that handles selection on the basis of a single direction vector.

Parameters

• vector (Vector) –

• tolerance (float) –

filter(objectList: Sequence[Shape])→ List[Shape]
There are lots of kinds of filters, but for planes they are always based on the normal of the plane, and for
edges on the tangent vector along the edge

Parameters
objectList (Sequence[Shape]) –

Return type
List[Shape]

test(vec: Vector)→ bool
Test a specified vector. Subclasses override to provide other implementations

3.12. CadQuery Class Summary 209

CadQuery Documentation, Release 2.4.0

Parameters
vec (Vector) –

Return type
bool

class cadquery.selectors.BinarySelector(left, right)
Bases: Selector

Base class for selectors that operates with two other selectors. Subclass must implement the :filterResults():
method.

filter(objectList: Sequence[Shape])
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

class cadquery.selectors.BoxSelector(point0, point1, boundingbox=False)
Bases: Selector

Selects objects inside the 3D box defined by 2 points.

If boundingbox is True only the objects that have their bounding box inside the given box is selected. Otherwise
only center point of the object is tested.

Applicability: all types of shapes

Example:

CQ(aCube).edges(BoxSelector((0, 1, 0), (1, 2, 1)))

filter(objectList: Sequence[Shape])
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

class cadquery.selectors.CenterNthSelector(vector: Vector, n: int, directionMax: bool = True, tolerance:
float = 0.0001)

Bases: _NthSelector

Sorts objects into a list with order determined by the distance of their center projected onto the specified direction.

Applicability:
All Shapes.

Parameters

• vector (Vector) –

• n (int) –

210 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

• directionMax (bool) –

• tolerance (float) –

key(obj: Shape)→ float
Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result
in obj being dropped by the clustering method.

Parameters
obj (Shape) –

Return type
float

class cadquery.selectors.DirectionMinMaxSelector(vector: Vector, directionMax: bool = True,
tolerance: float = 0.0001)

Bases: CenterNthSelector

Selects objects closest or farthest in the specified direction.

Applicability:
All object types. for a vertex, its point is used. for all other kinds of objects, the center of mass of the object
is used.

You can use the string shortcuts >(X|Y|Z) or <(X|Y|Z) if you want to select based on a cardinal direction.

For example this:

CQ(aCube).faces(DirectionMinMaxSelector((0, 0, 1), True))

Means to select the face having the center of mass farthest in the positive z direction, and is the same as:

CQ(aCube).faces(">Z")

Parameters

• vector (Vector) –

• directionMax (bool) –

• tolerance (float) –

class cadquery.selectors.DirectionNthSelector(vector: Vector, n: int, directionMax: bool = True,
tolerance: float = 0.0001)

Bases: ParallelDirSelector, CenterNthSelector

Filters for objects parallel (or normal) to the specified direction then returns the Nth one.

Applicability:
Linear Edges Planar Faces

Parameters

• vector (Vector) –

• n (int) –

• directionMax (bool) –

• tolerance (float) –

3.12. CadQuery Class Summary 211

CadQuery Documentation, Release 2.4.0

filter(objectlist: Sequence[Shape])→ List[Shape]
There are lots of kinds of filters, but for planes they are always based on the normal of the plane, and for
edges on the tangent vector along the edge

Parameters
objectlist (Sequence[Shape]) –

Return type
List[Shape]

class cadquery.selectors.DirectionSelector(vector: Vector, tolerance: float = 0.0001)
Bases: BaseDirSelector

Selects objects aligned with the provided direction.

Applicability:
Linear Edges Planar Faces

Use the string syntax shortcut +/-(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(DirectionSelector((0, 0, 1)))

selects faces with the normal in the z direction, and is equivalent to:

CQ(aCube).faces("+Z")

Parameters

• vector (Vector) –

• tolerance (float) –

test(vec: Vector)→ bool
Test a specified vector. Subclasses override to provide other implementations

Parameters
vec (Vector) –

Return type
bool

class cadquery.selectors.InverseSelector(selector)
Bases: Selector

Inverts the selection of given selector. In other words, selects all objects that is not selected by given selector.

filter(objectList: Sequence[Shape])
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

212 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

class cadquery.selectors.LengthNthSelector(n: int, directionMax: bool = True, tolerance: float =
0.0001)

Bases: _NthSelector

Select the object(s) with the Nth length

Applicability:
All Edge and Wire objects

Parameters

• n (int) –

• directionMax (bool) –

• tolerance (float) –

key(obj: Shape)→ float
Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result
in obj being dropped by the clustering method.

Parameters
obj (Shape) –

Return type
float

class cadquery.selectors.NearestToPointSelector(pnt)
Bases: Selector

Selects object nearest the provided point.

If the object is a vertex or point, the distance is used. For other kinds of shapes, the center of mass is used to to
compute which is closest.

Applicability: All Types of Shapes

Example:

CQ(aCube).vertices(NearestToPointSelector((0, 1, 0)))

returns the vertex of the unit cube closest to the point x=0,y=1,z=0

filter(objectList: Sequence[Shape])
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

class cadquery.selectors.ParallelDirSelector(vector: Vector, tolerance: float = 0.0001)
Bases: BaseDirSelector

Selects objects parallel with the provided direction.

Applicability:
Linear Edges Planar Faces

3.12. CadQuery Class Summary 213

CadQuery Documentation, Release 2.4.0

Use the string syntax shortcut |(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(ParallelDirSelector((0, 0, 1)))

selects faces with the normal parallel to the z direction, and is equivalent to:

CQ(aCube).faces("|Z")

Parameters

• vector (Vector) –

• tolerance (float) –

test(vec: Vector)→ bool
Test a specified vector. Subclasses override to provide other implementations

Parameters
vec (Vector) –

Return type
bool

class cadquery.selectors.PerpendicularDirSelector(vector: Vector, tolerance: float = 0.0001)
Bases: BaseDirSelector

Selects objects perpendicular with the provided direction.

Applicability:
Linear Edges Planar Faces

Use the string syntax shortcut #(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(PerpendicularDirSelector((0, 0, 1)))

selects faces with the normal perpendicular to the z direction, and is equivalent to:

CQ(aCube).faces("#Z")

Parameters

• vector (Vector) –

• tolerance (float) –

test(vec: Vector)→ bool
Test a specified vector. Subclasses override to provide other implementations

Parameters
vec (Vector) –

Return type
bool

214 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

class cadquery.selectors.RadiusNthSelector(n: int, directionMax: bool = True, tolerance: float =
0.0001)

Bases: _NthSelector

Select the object with the Nth radius.

Applicability:
All Edge and Wires.

Will ignore any shape that can not be represented as a circle or an arc of a circle.

Parameters

• n (int) –

• directionMax (bool) –

• tolerance (float) –

key(obj: Shape)→ float
Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result
in obj being dropped by the clustering method.

Parameters
obj (Shape) –

Return type
float

class cadquery.selectors.Selector

Bases: object

Filters a list of objects.

Filters must provide a single method that filters objects.

filter(objectList: Sequence[Shape])→ List[Shape]
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

Return type
List[Shape]

class cadquery.selectors.StringSyntaxSelector(selectorString)
Bases: Selector

Filter lists objects using a simple string syntax. All of the filters available in the string syntax are also available
(usually with more functionality) through the creation of full-fledged selector objects. see Selector and its
subclasses

Filtering works differently depending on the type of object list being filtered.

Parameters
selectorString – A two-part selector string, [selector][axis]

Returns
objects that match the specified selector

3.12. CadQuery Class Summary 215

CadQuery Documentation, Release 2.4.0

Modifiers are ('|','+','-','<','>','%')

|
parallel to (same as ParallelDirSelector). Can return multiple objects.

#
perpendicular to (same as PerpendicularDirSelector)

+
positive direction (same as DirectionSelector)

-
negative direction (same as DirectionSelector)

>
maximize (same as DirectionMinMaxSelector with directionMax=True)

<
minimize (same as DirectionMinMaxSelector with directionMax=False)

%
curve/surface type (same as TypeSelector)

axisStrings are: X,Y,Z,XY,YZ,XZ or (x,y,z) which defines an arbitrary direction

It is possible to combine simple selectors together using logical operations. The following operations are sup-
ported

and
Logical AND, e.g. >X and >Y

or
Logical OR, e.g. |X or |Y

not
Logical NOT, e.g. not #XY

exc(ept)
Set difference (equivalent to AND NOT): |X exc >Z

Finally, it is also possible to use even more complex expressions with nesting and arbitrary number of terms, e.g.

(not >X[0] and #XY) or >XY[0]

Selectors are a complex topic: see Selectors Reference for more information

filter(objectList: Sequence[Shape])
Filter give object list through th already constructed complex selector object

Parameters
objectList (Sequence[Shape]) –

class cadquery.selectors.SubtractSelector(left, right)
Bases: BinarySelector

Difference selector. Subtract results of a selector from another selectors results.

class cadquery.selectors.SumSelector(left, right)
Bases: BinarySelector

Union selector. Returns the sum of two selectors results.

216 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

class cadquery.selectors.TypeSelector(typeString: str)
Bases: Selector

Selects objects having the prescribed geometry type.

Applicability:
Faces: PLANE, CYLINDER, CONE, SPHERE, TORUS, BEZIER, BSPLINE, REVOLUTION, EXTRU-
SION, OFFSET, OTHER Edges: LINE, CIRCLE, ELLIPSE, HYPERBOLA, PARABOLA, BEZIER,
BSPLINE, OFFSET, OTHER

You can use the string selector syntax. For example this:

CQ(aCube).faces(TypeSelector("PLANE"))

will select 6 faces, and is equivalent to:

CQ(aCube).faces("%PLANE")

Parameters
typeString (str) –

filter(objectList: Sequence[Shape])→ List[Shape]
Filter the provided list.

The default implementation returns the original list unfiltered.

Parameters
objectList (list of OCCT primitives) – list to filter

Returns
filtered list

Return type
List[Shape]

cadquery.occ_impl.exporters.assembly.exportAssembly(assy: AssemblyProtocol, path: str, mode:
Literal['default', 'fused'] = 'default', **kwargs)
→ bool

Export an assembly to a STEP file.

kwargs is used to provide optional keyword arguments to configure the exporter.

Parameters

• assy (AssemblyProtocol) – assembly

• path (str) – Path and filename for writing

• mode (Literal['default', 'fused']) – STEP export mode. The options are “default”,
and “fused” (a single fused compound). It is possible that fused mode may exhibit low
performance.

• fuzzy_tol (float) – OCCT fuse operation tolerance setting used only for fused assembly
export.

• glue (bool) – Enable gluing mode for improved performance during fused assembly export.
This option should only be used for non-intersecting shapes or those that are only touching
or partially overlapping. Note that when glue is enabled, the resulting fused shape may be
invalid if shapes are intersecting in an incompatible way. Defaults to False.

3.12. CadQuery Class Summary 217

CadQuery Documentation, Release 2.4.0

• write_pcurves (bool) – Enable or disable writing parametric curves to the STEP file.
Default True. If False, writes STEP file without pcurves. This decreases the size of the
resulting STEP file.

• precision_mode (int) – Controls the uncertainty value for STEP entities. Specify -1, 0,
or 1. Default 0. See OCCT documentation.

Return type
bool

cadquery.occ_impl.exporters.assembly.exportCAF(assy: AssemblyProtocol, path: str)→ bool
Export an assembly to a OCAF xml file (internal OCCT format).

Parameters

• assy (AssemblyProtocol) –

• path (str) –

Return type
bool

cadquery.occ_impl.exporters.assembly.exportGLTF(assy: AssemblyProtocol, path: str, binary:
Optional[bool] = None, tolerance: float = 0.001,
angularTolerance: float = 0.1)

Export an assembly to a gltf file.

Parameters

• assy (AssemblyProtocol) –

• path (str) –

• binary (Optional[bool]) –

• tolerance (float) –

• angularTolerance (float) –

cadquery.occ_impl.exporters.assembly.exportVRML(assy: AssemblyProtocol, path: str, tolerance: float =
0.001, angularTolerance: float = 0.1)

Export an assembly to a vrml file using vtk.

Parameters

• assy (AssemblyProtocol) –

• path (str) –

• tolerance (float) –

• angularTolerance (float) –

cadquery.occ_impl.exporters.assembly.exportVTKJS(assy: AssemblyProtocol, path: str)
Export an assembly to a zipped vtkjs. NB: .zip extensions is added to path.

Parameters

• assy (AssemblyProtocol) –

• path (str) –

cadquery.occ_impl.assembly.toJSON(assy: AssemblyProtocol, color: Tuple[float, float, float, float] = (1.0, 1.0,
1.0, 1.0), tolerance: float = 0.001)→ List[Dict[str, Any]]

Export an object to a structure suitable for converting to VTK.js JSON.

218 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Parameters

• assy (AssemblyProtocol) –

• color (Tuple[float, float, float, float]) –

• tolerance (float) –

Return type
List[Dict[str, Any]]

class cadquery.occ_impl.exporters.dxf.DxfDocument(dxfversion: str = 'AC1027', setup: Union[bool,
List[str]] = False, doc_units: int = 4, *, metadata:
Optional[Dict[str, str]] = None, approx:
Optional[Literal['spline', 'arc']] = None, tolerance:
float = 0.001)

Create DXF document from CadQuery objects.

A wrapper for ezdxf providing methods for converting cadquery.Workplane objects to DXF entities.

The ezdxf document is available as the property document, allowing most features of ezdxf to be utilised directly.

Example usage

Listing 1: Single layer DXF document

rectangle = cq.Workplane().rect(10, 20)

dxf = DxfDocument()
dxf.add_shape(rectangle)
dxf.document.saveas("rectangle.dxf")

Listing 2: Multilayer DXF document

rectangle = cq.Workplane().rect(10, 20)
circle = cq.Workplane().circle(3)

dxf = DxfDocument()
dxf = (

dxf.add_layer("layer_1", color=2)
.add_layer("layer_2", color=3)
.add_shape(rectangle, "layer_1")
.add_shape(circle, "layer_2")

)
dxf.document.saveas("rectangle-with-hole.dxf")

Parameters

• dxfversion (str) –

• setup (Union[bool, List[str]]) –

• doc_units (int) –

• metadata (Optional[Dict[str, str]]) –

• approx (Optional[Literal['spline', 'arc']]) –

• tolerance (float) –

3.12. CadQuery Class Summary 219

https://ezdxf.readthedocs.io/

CadQuery Documentation, Release 2.4.0

__init__(dxfversion: str = 'AC1027', setup: Union[bool, List[str]] = False, doc_units: int = 4, *, metadata:
Optional[Dict[str, str]] = None, approx: Optional[Literal['spline', 'arc']] = None, tolerance: float
= 0.001)

Initialize DXF document.

Parameters

• dxfversion (str) – DXF version specifier as string, default is “AC1027” respec-
tively “R2013”

• setup (Union[bool, List[str]]) – setup default styles, False for no setup, True to
set up everything or a list of topics as strings, e.g. ["linetypes", "styles"] refer to
ezdxf.new().

• doc_units (int) – ezdxf document/modelspace units

• metadata (Optional[Dict[str, str]]) – document metadata a dictionary of name
value pairs

• approx (Optional[Literal['spline', 'arc']]) – Approximation strategy for convert-
ing cadquery.Workplane objects to DXF entities:

None
no approximation applied

"spline"
all splines approximated as cubic splines

"arc"
all curves approximated as arcs and straight segments

• tolerance (float) – Approximation tolerance for converting cadquery.Workplane ob-
jects to DXF entities.

add_layer(name: str, *, color: int = 7, linetype: str = 'CONTINUOUS')→ Self
Create a layer definition

Refer to ezdxf layers and ezdxf layer tutorial.

Parameters

• name (str) – layer definition name

• color (int) – color index. Standard colors include: 1 red, 2 yellow, 3 green, 4 cyan, 5
blue, 6 magenta, 7 white/black

• linetype (str) – ezdxf line type

Return type
Self

add_shape(workplane: Workplane, layer: str = '')→ Self
Add CadQuery shape to a DXF layer.

Parameters

• workplane (Workplane) – CadQuery Workplane

• layer (str) – layer definition name

Return type
Self

220 Chapter 3. Table Of Contents

https://ezdxf.readthedocs.io/en/stable/drawing/drawing.html#ezdxf.document.Drawing.dxfversion
https://ezdxf.readthedocs.io/en/stable/drawing/management.html#ezdxf.new
https://ezdxf.readthedocs.io/en/stable/concepts/units.html
https://ezdxf.readthedocs.io/en/stable/drawing/management.html#ezdxf-metadata
https://ezdxf.readthedocs.io/en/stable/concepts/layers.html#layer-concept
https://ezdxf.readthedocs.io/en/stable/tutorials/layers.html
https://ezdxf.readthedocs.io/en/stable/concepts/linetypes.html

CadQuery Documentation, Release 2.4.0

3.13 Importing and Exporting Files

3.13.1 Introduction

The purpose of this section is to explain how to import external file formats into CadQuery, and export files from it as
well. While the external file formats can be used to interchange CAD model data with other software, CadQuery does
not support any formats that carry parametric data with them at this time. The only format that is fully parametric is
CadQuery’s own Python format. Below are lists of the import and export file formats that CadQuery supports.

Import Formats

• DXF

• STEP

Export Formats

• DXF

• SVG

• STEP

• STL

• AMF

• TJS

• VRML

• VTP

• 3MF

• glTF

Notes on the Formats

• DXF is useful for importing complex 2D profiles that would be tedious to create using CadQuery’s 2D operations.
An example is that the 2D profiles of aluminum extrusion are often provided in DXF format. These can be
imported and extruded to create the length of extrusion that is needed in a design.

• STEP files are useful for interchanging model data with other CAD and analysis systems, such as FreeCAD.
Many parts such as screws have STEP files available, which can be imported and used in CadQuery assemblies.

• STL, AMF and 3MF files are mesh-based formats which are typically used in additive manufacturing (i.e. 3D
printing). AMF and 3MF files support more features, but are not as universally supported as STL files.

• TJS is short for ThreeJS, and is a JSON mesh format that is useful for displaying 3D models in web browsers.
The TJS format is used to display embedded 3D examples within the CadQuery documentation.

• VRML is a mesh-based format for representing interactive 3D objects in a web browser.

• VTP is a mesh-based format used by the VTK library.

• glTF is a mesh-based format useful for viewing models on the web. Whether the resulting glTF file is binary
(.glb) or text (.gltf) is set by the file extension. This export format is only available for assemblies.

3.13. Importing and Exporting Files 221

CadQuery Documentation, Release 2.4.0

3.13.2 Importing DXF

DXF files can be imported using the importers.importDXF() method.

importers.importDXF(tol: float = 1e-06, exclude: List[str] = [], include: List[str] = [])→ Workplane
Loads a DXF file into a Workplane.

All layers are imported by default. Provide a layer include or exclude list to select layers. Layer names are handled
as case-insensitive.

Parameters

• filename (str) – The path and name of the DXF file to be imported

• tol (float) – The tolerance used for merging edges into wires

• exclude (List[str]) – a list of layer names not to import

• include (List[str]) – a list of layer names to import

Return type
Workplane

Importing a DXF profile with default settings and using it within a CadQuery script is shown in the following code.

import cadquery as cq

result = (
cq.importers.importDXF("/path/to/dxf/circle.dxf").wires().toPending().extrude(10)

)

Note the use of the Workplane.wires() and Workplane.toPending() methods to make the DXF profile ready for
use during subsequent operations. Calling toPending() tells CadQuery to make the edges/wires available to the next
modelling operation that is called in the chain.

3.13.3 Importing STEP

STEP files can be imported using the importers.importStep() method (note the capitalization of “Step”). There
are no parameters for this method other than the file path to import.

import cadquery as cq

result = cq.importers.importStep("/path/to/step/block.stp")

3.13.4 Exporting STEP

This section covers exporting CadQuery Workplane objects to STEP. For exporting assemblies to STEP, see the next
section.

222 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Default

The exporters module handles exporting Workplane objects to STEP. It is not necessary to set the export type explicitly
since it will be determined from the file extension. Below is an example.

Create a simple object
box = cq.Workplane().box(10, 10, 10)

Export the box
cq.exporters.export(box, "/path/to/step/box.step")

Non-Default File Extensions

If there is a requirement to export the STEP file using an “stp” extension, CadQuery will throw an error saying that it
does not recognize the file extension. In that case the export type has to be specified.

Create a simple object
box = cq.Workplane().box(10, 10, 10)

Export the box
cq.exporters.export(box, "/path/to/step/box.stp", cq.exporters.ExportTypes.STEP)

The export type may also be specified as a literal
cq.exporters.export(box, "/path/to/step/box2.stp", "STEP")

Setting Extra Options

There are additional options that can be set when exporting an object to a STEP file. For an explanation of the op-
tions available, see the documentation of the Shape.exportStep()method or the Assembly.exportAssembly`()
method.

Create a simple object
box = cq.Workplane().box(10, 10, 10)

Export the box, provide additional options with the opt dict
cq.exporters.export(box, "/path/to/step/box.step", opt={"write_pcurves": False})

or equivalently when exporting a lower level Shape object
box.val().exportStep("/path/to/step/box2.step", write_pcurves=False)

3.13.5 Exporting Assemblies to STEP

It is possible to export CadQuery assemblies directly to STEP. The STEP exporter has multiple options which change the
way exported STEP files will appear and operate when opened in other CAD programs. All assembly export methods
shown here will preserve the color information from the assembly.

3.13. Importing and Exporting Files 223

CadQuery Documentation, Release 2.4.0

Default

CadQuery assemblies have a Assembly.save() method which can write an assembly to a STEP file. An example
assembly export with all defaults is shown below.

import cadquery as cq

Create a sample assembly
assy = cq.Assembly()
body = cq.Workplane().box(10, 10, 10)
assy.add(body, color=cq.Color(1, 0, 0), name="body")
pin = cq.Workplane().center(2, 2).cylinder(radius=2, height=20)
assy.add(pin, color=cq.Color(0, 1, 0), name="pin")

Save the assembly to STEP
assy.save("out.step")

This will produce a STEP file that is nested with auto-generated object names. The colors of each assembly object will
be preserved, but the names that were set for each will not.

Fused

The following will attempt to create a single, fused shape while preserving the name and color information of each
assembly object. The process of fusing the solid may cause performance issues in some cases, and is likely to alter the
faces of the fused solids.

import cadquery as cq

Create a sample assembly
assy = cq.Assembly()
body = cq.Workplane().box(10, 10, 10)
assy.add(body, color=cq.Color(1, 0, 0), name="body")
pin = cq.Workplane().center(2, 2).cylinder(radius=2, height=20)
assy.add(pin, color=cq.Color(0, 1, 0), name="pin")

Save the assembly to STEP
assy.save("out.stp", "STEP", mode="fused")

Specify additional options such as glue as keyword arguments
assy.save("out_glue.step", mode="fused", glue=True, write_pcurves=False)

Naming

It is also possible to set the name of the top level assembly object in the STEP file with either the DEFAULT or FUSED
methods. This is done by setting the name property of the assembly before calling Assembly.save().

assy = Assembly(name="my_assembly")
assy.save(

"out.stp",
cq.exporters.ExportTypes.STEP,
mode=cq.exporters.assembly.ExportModes.FUSED,

)

224 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

If an assembly name is not specified, a UUID will be used to avoid name conflicts.

3.13.6 Exporting Assemblies to glTF

It is possible to export CadQuery assemblies to glTF format. glTF is a mesh-based format useful for viewing models
on the web. Whether the resulting glTF file is binary (.glb) or text (.gltf) is set by the file extension.

CadQuery assemblies have a Assembly.save() method which can write an assembly to a glTF file. An example
assembly export with all defaults is shown below. To export to a binary glTF file, change the extension to glb.

import cadquery as cq

Create a sample assembly
assy = cq.Assembly()
body = cq.Workplane().box(10, 10, 10)
assy.add(body, color=cq.Color(1, 0, 0), name="body")
pin = cq.Workplane().center(2, 2).cylinder(radius=2, height=20)
assy.add(pin, color=cq.Color(0, 1, 0), name="pin")

Save the assembly to STEP
assy.save("out.gltf")

3.13.7 Exporting SVG

The SVG exporter has several options which can be useful for achieving the desired final output. Those options are as
follows.

• width - Width of the resulting image (None to fit based on height).

• height - Height of the resulting image (None to fit based on width).

• marginLeft - Inset margin from the left side of the document.

• marginTop - Inset margin from the top side of the document.

• projectionDir - Direction the camera will view the shape from.

• showAxes - Whether or not to show the axes indicator, which will only be visible when the projectionDir is also
at the default.

• strokeWidth - Width of the line that visible edges are drawn with.

• strokeColor - Color of the line that visible edges are drawn with.

• hiddenColor - Color of the line that hidden edges are drawn with.

• showHidden - Whether or not to show hidden lines.

• focus - If specified, creates a perspective SVG with the projector at the distance specified.

The options are passed to the exporter in a dictionary, and can be left out to force the SVG to be created with default
options. Below are examples with and without options set.

Without options:

import cadquery as cq
from cadquery import exporters

(continues on next page)

3.13. Importing and Exporting Files 225

CadQuery Documentation, Release 2.4.0

(continued from previous page)

result = cq.Workplane().box(10, 10, 10)

exporters.export(result, "/path/to/file/box.svg")

Results in:

Note that the exporters API figured out the format type from the file extension. The format type can be set explicitly
by using exporters.ExportTypes.

The following is an example of using options to alter the resulting SVG output by passing in the opt parameter.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.export(
result,
"/path/to/file/box_custom_options.svg",
opt={

"width": 300,
"height": 300,
"marginLeft": 10,
"marginTop": 10,
"showAxes": False,
"projectionDir": (0.5, 0.5, 0.5),
"strokeWidth": 0.25,
"strokeColor": (255, 0, 0),
"hiddenColor": (0, 0, 255),
"showHidden": True,

},
)

Which results in the following image:

Exporting with the additional option "focus": 25 results in the following output SVG with perspective:

3.13.8 Exporting STL

The STL exporter is capable of adjusting the quality of the resulting mesh, and accepts the following parameters.

Shape.exportStl(fileName: str, tolerance: float = 0.001, angularTolerance: float = 0.1, ascii: bool = False,
relative: bool = True, parallel: bool = True)→ bool

Exports a shape to a specified STL file.

Parameters

• fileName (str) – The path and file name to write the STL output to.

• tolerance (float) – A linear deflection setting which limits the distance between a curve
and its tessellation. Setting this value too low will result in large meshes that can consume

226 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

computing resources. Setting the value too high can result in meshes with a level of detail
that is too low. Default is 1e-3, which is a good starting point for a range of cases.

• angularTolerance (float) – Angular deflection setting which limits the angle between
subsequent segments in a polyline. Default is 0.1.

• ascii (bool) – Export the file as ASCII (True) or binary (False) STL format. Default is
binary.

• relative (bool) – If True, tolerance will be scaled by the size of the edge being meshed.
Default is True. Setting this value to True may cause large features to become faceted, or
small features dense.

• parallel (bool) – If True, OCCT will use parallel processing to mesh the shape. Default
is True.

Return type
bool

For more complex objects, some experimentation with tolerance and angularTolerance may be required to find
the optimum values that will produce an acceptable mesh.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.export(result, "/path/to/file/mesh.stl")

3.13.9 Exporting AMF and 3MF

The AMF and 3MF exporters are capable of adjusting the quality of the resulting mesh, and accept the following
parameters.

• fileName - The path and file name to write the AMF output to.

• tolerance - A linear deflection setting which limits the distance between a curve and its tessellation. Setting
this value too low will result in large meshes that can consume computing resources. Setting the value too high
can result in meshes with a level of detail that is too low. Default is 0.1, which is good starting point for a range
of cases.

• angularTolerance - Angular deflection setting which limits the angle between subsequent segments in a poly-
line. Default is 0.1.

For more complex objects, some experimentation with tolerance and angularTolerance may be required to find
the optimum values that will produce an acceptable mesh. Note that parameters for color and material are absent.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.export(result, "/path/to/file/mesh.amf", tolerance=0.01, angularTolerance=0.1)

3.13. Importing and Exporting Files 227

CadQuery Documentation, Release 2.4.0

3.13.10 Exporting TJS

The TJS (ThreeJS) exporter produces a file in JSON format that describes a scene for the ThreeJS WebGL renderer.
The objects in the first argument are converted into a mesh and then form the ThreeJS geometry for the scene. The
mesh can be adjusted with the following parameters.

• fileName - The path and file name to write the ThreeJS output to.

• tolerance - A linear deflection setting which limits the distance between a curve and its tessellation. Setting
this value too low will result in large meshes that can consume computing resources. Setting the value too high
can result in meshes with a level of detail that is too low. Default is 0.1, which is good starting point for a range
of cases.

• angularTolerance - Angular deflection setting which limits the angle between subsequent segments in a poly-
line. Default is 0.1.

For more complex objects, some experimentation with tolerance and angularTolerance may be required to find
the optimum values that will produce an acceptable mesh.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.export(
result,
"/path/to/file/mesh.json",
tolerance=0.01,
angularTolerance=0.1,
exportType=exporters.ExportTypes.TJS,

)

Note that the export type was explicitly specified as TJS because the extension that was used for the file name was
.json. If the extension .tjs had been used, CadQuery would have understood to use the TJS export format.

3.13.11 Exporting VRML

The VRML exporter is capable of adjusting the quality of the resulting mesh, and accepts the following parameters.

• fileName - The path and file name to write the VRML output to.

• tolerance - A linear deflection setting which limits the distance between a curve and its tessellation. Setting
this value too low will result in large meshes that can consume computing resources. Setting the value too high
can result in meshes with a level of detail that is too low. Default is 0.1, which is good starting point for a range
of cases.

• angularTolerance - Angular deflection setting which limits the angle between subsequent segments in a poly-
line. Default is 0.1.

For more complex objects, some experimentation with tolerance and angularTolerance may be required to find
the optimum values that will produce an acceptable mesh.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

(continues on next page)

228 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

(continued from previous page)

exporters.export(
result, "/path/to/file/mesh.vrml", tolerance=0.01, angularTolerance=0.1

)

3.13.12 Exporting DXF

See also:

cadquery.occ_impl.exporters.dxf.DxfDocument for exporting multiple Workplanes to one or many layers of a
DXF document.

Options

approx
Approximation strategy for converting cadquery.Workplane objects to DXF entities:

None
no approximation applied

"spline"
all splines approximated as cubic splines

"arc"
all curves approximated as arcs and straight segments

tolerance
Approximation tolerance for converting cadquery.Workplane objects to DXF entities. See Approximation
strategy.

doc_units
Ezdxf document/modelspace units. See Units.

Listing 3: DXF document without options.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.exportDXF(result, "/path/to/file/object.dxf")
or
exporters.export(result, "/path/to/file/object.dxf")

Units

The default DXF document units are mm (doc_units = 4).

3.13. Importing and Exporting Files 229

https://ezdxf.readthedocs.io/en/stable/concepts/units.html

CadQuery Documentation, Release 2.4.0

doc_units Unit
0 Unitless
1 Inches
2 Feet
3 Miles
4 Millimeters
5 Centimeters
6 Meters

Document units can be set to any unit supported by ezdxf.

Listing 4: DXF document with units set to meters.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.exportDXF(
result,
"/path/to/file/object.dxf",
doc_units=6, # set DXF document units to meters

)

or

exporters.export(
result,
"/path/to/file/object.dxf",
opt={"doc_units": 6}, # set DXF document units to meters

)

Approximation strategy

By default, the DXF exporter will output splines exactly as they are represented by the OpenCascade kernel. Unfortu-
nately some software cannot handle higher-order splines resulting in missing curves after DXF import. To resolve this,
specify an approximation strategy controlled by the following options:

• approx - None, "spline" or "arc". "spline" results in all splines approximated with cubic splines. "arc"
results in all curves approximated with arcs and line segments.

• tolerance: Acceptable error of the approximation, in document/modelspace units. Defaults to 0.001 (1 thou
for inch-scale drawings, 1 µm for mm-scale drawings).

230 Chapter 3. Table Of Contents

https://ezdxf.readthedocs.io/en/stable/concepts/units.html

CadQuery Documentation, Release 2.4.0

Listing 5: DXF document with curves approximated with cubic splines.

cq.exporters.exportDXF(result, "/path/to/file/object.dxf", approx="spline")

3.13.13 Exporting Other Formats

The remaining export formats do not accept any additional parameters other than file name, and can be exported using
the following structure.

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.export(result, "/path/to/file/object.[file_extension]")

Be sure to use the correct file extension so that CadQuery can determine the export format. If in doubt, fall back to
setting the type explicitly by using exporters.ExportTypes.

For example:

import cadquery as cq
from cadquery import exporters

result = cq.Workplane().box(10, 10, 10)

exporters.export(result, "/path/to/file/object.dxf", exporters.ExportTypes.DXF)

3.14 The CadQuery Gateway Interface

CadQuery is first and foremost designed as a library, which can be used as a part of any project. In this context, there
is no need for a standard script format or gateway API.

Though the embedded use case is the most common, several tools have been created which run cadquery scripts on
behalf of the user, and then render the result of the script visually.

These execution environments (EE) generally accept a script and user input values for script parameters, and then
display the resulting objects visually to the user.

Today, three execution environments exist:

• CQ-editor, which runs scripts inside of a CadQuery IDE, and displays objects in the display window and includes
features like debugging.

• The cq-directive, which is used to execute scripts inside of sphinx-doc, producing documented examples that
include both a script and an SVG representation of the object that results.

The CQGI is distributed with CadQuery, and standardizes the interface between execution environments and CadQuery
scripts.

3.14. The CadQuery Gateway Interface 231

https://github.com/CadQuery/CQ-editor

CadQuery Documentation, Release 2.4.0

3.14.1 The Script Side

CQGI compliant containers provide an execution environment for scripts. The environment includes:

• the cadquery library is automatically imported as ‘cq’.

• the cadquery.cqgi.ScriptCallback.show_object() method is defined that should be used to export a
shape to the execution environment

• the cadquery.cqgi.ScriptCallBack.debug() method is defined, which can be used by scripts to debug
model output during execution.

Scripts must call show_object at least once. Invoking show_object more than once will send multiple objects to the
container. An error will occur if the script does not return an object using the show_object() method.

This CQGI compliant script produces a cube with a circle on top, and displays a workplane as well as an intermediate
circle as debug output:

base_cube = cq.Workplane("XY").rect(1.0, 1.0).extrude(1.0)
top_of_cube_plane = base_cube.faces(">Z").workplane()
debug(

top_of_cube_plane,
{

"color": "yellow",
},

)
debug(top_of_cube_plane.center, {"color": "blue"})

circle = top_of_cube_plane.circle(0.5)
debug(circle, {"color": "red"})

show_object(circle.extrude(1.0))

Note that importing cadquery is not required. At the end of this script, one object will be displayed, in addition to a
workplane, a point, and a circle

Future enhancements will include several other methods, used to provide more metadata for the execution
environment:

• cadquery.cqgi.ScriptCallback.add_error(), indicates an error with an input parameter

• cadquery.cqgi.ScriptCallback.describe_parameter(), provides extra information about a pa-
rameter in the script,

3.14.2 The execution environment side

CQGI makes it easy to run cadquery scripts in a standard way. To run a script from an execution environment, run code
like this:

from cadquery import cqgi

user_script = ...
build_result = cqgi.parse(user_script).build()

The cadquery.cqgi.parse() method returns a cadquery.cqgi.CQModel object.

The metadata`p property of the object contains a `cadquery.cqgi.ScriptMetaData object, which can be used to discover
the user parameters available. This is useful if the execution environment would like to present a GUI to allow the user

232 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

to change the model parameters. Typically, after collecting new values, the environment will supply them in the build()
method.

This code will return a dictionary of parameter values in the model text SCRIPT::
parameters = cqgi.parse(SCRIPT).metadata.parameters

The dictionary you get back is a map where key is the parameter name, and value is an InputParameter object, which
has a name, type, and default value.

The type is an object which extends ParameterType– you can use this to determine what kind of widget to render (
checkbox for boolean, for example).

The parameter object also has a description, valid values, minimum, and maximum values, if the user has provided
them using the describe_parameter() method.

Calling cadquery.cqgi.CQModel.build() returns a cadquery.cqgi.BuildResult object, ,which includes the
script execution time, and a success flag.

If the script was successful, the results property will include a list of results returned by the script, as well as any debug
the script produced

If the script failed, the exception property contains the exception object.

If you have a way to get inputs from a user, you can override any of the constants defined in the user script with new
values:

from cadquery import cqgi

user_script = ...
build_result = cqgi.parse(user_script).build(

build_parameters={"param": 2}, build_options={}
)

If a parameter called ‘param’ is defined in the model, it will be assigned the value 2 before the script runs. An error will
occur if a value is provided that is not defined in the model, or if the value provided cannot be assigned to a variable
with the given name.

build_options is used to set server-side settings like timeouts, tessellation tolerances, and other details about how the
model should be built.

3.14.3 More about script variables

CQGI uses the following rules to find input variables for a script:

• only top-level statements are considered

• only assignments of constant values to a local name are considered.

For example, in the following script:

h = 1.0
w = 2.0
foo = "bar"

def some_function():
x = 1

3.14. The CadQuery Gateway Interface 233

CadQuery Documentation, Release 2.4.0

h, w, and foo will be overridable script variables, but x is not.

You can list the variables defined in the model by using the return value of the parse method:

model = cqgi.parse(user_script)

a dictionary of InputParameter objects
parameters = model.metadata.parameters

The key of the dictionary is a string , and the value is a cadquery.cqgi.InputParameter object See the CQGI API
docs for more details.

Future enhancements will include a safer sandbox to prevent malicious scripts.

3.14.4 Automating export to STL

A common use-case for the CQGI is the automation of processing cadquery code into geometry, doing so via the CQGI
rather than an export line in the script itself leads to a much tidier environment; you may need to do this as part of an
automated-workflow, batch-conversion, exporting to another software for assembly, or running stress simulations on
resulting bodies.

The below Python script demonstrates how to open, process, and export an STL file from any valid cadquery script:

Load CQGI
import cadquery.cqgi as cqgi
import cadquery as cq

load the cadquery script
model = cqgi.parse(open("example.py").read())

run the script and store the result (from the show_object call in the script)
build_result = model.build()

test to ensure the process worked.
if build_result.success:

loop through all the shapes returned and export to STL
for i, result in enumerate(build_result.results):

cq.exporters.export(result.shape, f"example_output{i}.stl")
else:

print(f"BUILD FAILED: {build_result.exception}")

3.14.5 Important CQGI Methods

These are the most important Methods and classes of the CQGI

parse(script_source) Parses the script as a model, and returns a model.
CQModel.build([build_parameters, build_options]) Executes the script, using the optional parameters to

override those in the model
BuildResult() The result of executing a CadQuery script.
ScriptCallback.show_object(shape[, options]) Return an object to the executing environment, with op-

tions.

234 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.14.6 Complete CQGI API

The CadQuery Gateway Interface. Provides classes and tools for executing CadQuery scripts

class cadquery.cqgi.BuildResult

The result of executing a CadQuery script. The success property contains whether the execution was successful.

If successful, the results property contains a list of all results, and the first_result property contains the first result.

If unsuccessful, the exception property contains a reference to the stack trace that occurred.

class cadquery.cqgi.CQModel(script_source)
Represents a Cadquery Script.

After construction, the metadata property contains a ScriptMetaData object, which describes the model in more
detail, and can be used to retrieve the parameters defined by the model.

the build method can be used to generate a 3d model

build(build_parameters=None, build_options=None)
Executes the script, using the optional parameters to override those in the model

Parameters

• build_parameters – a dictionary of variables. The variables must be assignable to the
underlying variable type. These variables override default values in the script

• build_options – build options for how to build the model. Build options include things
like timeouts, tessellation tolerances, etc

Raises
Nothing. If there is an exception, it will be on the exception property of the result. This is the
interface so that we can return other information on the result, such as the build time

Returns
a BuildResult object, which includes the status of the result, and either a resulting shape or
an exception

validate(params)
Determine if the supplied parameters are valid. NOT IMPLEMENTED YET– raises NotImplementedError

Parameters
params – a dictionary of parameters

class cadquery.cqgi.ConstantAssignmentFinder(cq_model)
Visits a parse tree, and adds script parameters to the cqModel

class cadquery.cqgi.EnvironmentBuilder

Builds an execution environment for a cadquery script. The environment includes the builtins, as well as the
other methods the script will need.

class cadquery.cqgi.InputParameter

Defines a parameter that can be supplied when the model is executed.

Name, varType, and default_value are always available, because they are computed from a variable assignment
line of code:

The others are only available if the script has used define_parameter() to provide additional metadata

default_value

the default value for the variable.

3.14. The CadQuery Gateway Interface 235

CadQuery Documentation, Release 2.4.0

desc

help text describing the variable. Only available if the script used describe_parameter()

name

the name of the parameter.

valid_values

valid values for the variable. Only available if the script used describe_parameter()

varType

type of the variable: BooleanParameter, StringParameter, NumericParameter

exception cadquery.cqgi.InvalidParameterError

Raised when an attempt is made to provide a new parameter value that cannot be assigned to the model

exception cadquery.cqgi.NoOutputError

Raised when the script does not execute the show_object() method to return a solid

class cadquery.cqgi.ParameterDescriptionFinder(cq_model)
Visits a parse tree, looking for function calls to describe_parameter(var, description)

visit_Call(node)
Called when we see a function call. Is it describe_parameter?

class cadquery.cqgi.ScriptCallback

Allows a script to communicate with the container the show_object() method is exposed to CQ scripts, to allow
them to return objects to the execution environment

add_error(param, field_list)
Not implemented yet: allows scripts to indicate that there are problems with inputs

debug(obj, args={})
Debug print/output an object, with optional arguments.

describe_parameter(var_data)
Do Nothing– we parsed the ast ahead of execution to get what we need.

show_object(shape, options={'name': 'door'}, **kwargs)
Return an object to the executing environment, with options.

Parameters

• shape – a cadquery object

• options – a dictionary of options that will be made available to the executing environment

exception cadquery.cqgi.ScriptExecutionError(line=None, message=None)
Represents a script syntax error. Useful for helping clients pinpoint issues with the script interactively

class cadquery.cqgi.ScriptMetadata

Defines the metadata for a parsed CQ Script. the parameters property is a dict of InputParameter objects.

class cadquery.cqgi.ShapeResult

An object created by a build, including the user parameters provided

cadquery.cqgi.parse(script_source)
Parses the script as a model, and returns a model.

If you would prefer to access the underlying model without building it, for example, to inspect its available
parameters, construct a CQModel object.

236 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

Parameters
script_source – the script to run. Must be a valid cadquery script

Returns
a CQModel object that defines the script and allows execution

3.15 Extending CadQuery

If you find that CadQuery does not suit your needs, you can easily extend it. CadQuery provides several extension
methods:

• You can load plugins others have developed. This is by far the easiest way to access other code

• You can define your own plugins.

• You can use OCP scripting directly

3.15.1 Using OpenCascade methods

The easiest way to extend CadQuery is to simply use OpenCascade/OCP scripting inside of your build method. Just
about any valid OCP script will execute just fine. For example, this simple CadQuery script:

return cq.Workplane("XY").box(1.0, 2.0, 3.0).val()

is actually equivalent to:

return cq.Shape.cast(
BRepPrimAPI_MakeBox(

gp_Ax2(Vector(-0.1, -1.0, -1.5), Vector(0, 0, 1)), 1.0, 2.0, 3.0
).Shape()

)

As long as you return a valid OCP Shape, you can use any OCP methods you like. You can even mix and match the
two. For example, consider this script, which creates a OCP box, but then uses CadQuery to select its faces:

box = cq.Shape.cast(
BRepPrimAPI_MakeBox(

gp_Ax2(Vector(-0.1, -1.0, -1.5), Vector(0, 0, 1)), 1.0, 2.0, 3.0
).Shape()

)
cq = Workplane(box).faces(">Z").size() # returns 6

3.15.2 Extending CadQuery: Plugins

Though you can get a lot done with OpenCascade, the code gets pretty nasty in a hurry. CadQuery shields you from a
lot of the complexity of the OpenCascade API.

You can get the best of both worlds by wrapping your OCP script into a CadQuery plugin.

A CadQuery plugin is simply a function that is attached to the CadQuery cadquery.CQ() or cadquery.Workplane()
class. When connected, your plugin can be used in the chain just like the built-in functions.

There are a few key concepts important to understand when building a plugin

3.15. Extending CadQuery 237

CadQuery Documentation, Release 2.4.0

3.15.3 The Stack

Every CadQuery object has a local stack, which contains a list of items. The items on the stack will be one of these
types:

• A CadQuery SolidReference object, which holds a reference to a OCP solid

• A OCP object, a Vertex, Edge, Wire, Face, Shell, Solid, or Compound

The stack is available by using self.objects, and will always contain at least one object.

Note: Objects and points on the stack are always in global coordinates. Similarly, any objects you create must be
created in terms of global coordinates as well!

3.15.4 Preserving the Chain

CadQuery’s fluent API relies on the ability to chain calls together one after another. For this to work, you must return
a valid CadQuery object as a return value. If you choose not to return a CadQuery object, then your plugin will end
the chain. Sometimes this is desired for example cadquery.Workplane.size()

There are two ways you can safely continue the chain:

1. return self If you simply wish to modify the stack contents, you can simply return a reference to self. This
approach is destructive, because the contents of the stack are modified, but it is also the simplest.

2. cadquery.Workplane.newObject()Most of the time, you will want to return a new object. Using newObject
will return a new CQ or Workplane object having the stack you specify, and will link this object to the previous
one. This preserves the original object and its stack.

3.15.5 Helper Methods

When you implement a CadQuery plugin, you are extending CadQuery’s base objects. As a result, you can call any
CadQuery or Workplane methods from inside of your extension. You can also call a number of internal methods that
are designed to aid in plugin creation:

• cadquery.Workplane._makeWireAtPoints() will invoke a factory function you supply for all points on the
stack, and return a properly constructed cadquery object. This function takes care of registering wires for you
and everything like that

• cadquery.Workplane.newObject() returns a new Workplane object with the provided stack, and with its
parent set to the current object. The preferred way to continue the chain

• cadquery.Workplane.findSolid() returns the first Solid found in the chain, working from the current object
upwards in the chain. commonly used when your plugin will modify an existing solid, or needs to create objects
and then combine them onto the ‘main’ part that is in progress

• cadquery.Workplane._addPendingWire() must be called if you add a wire. This allows the base class to
track all the wires that are created, so that they can be managed when extrusion occurs.

• cadquery.Workplane.wire() gathers up all of the edges that have been drawn (eg, by line, vline, etc), and
attempts to combine them into a single wire, which is returned. This should be used when your plugin creates
2D edges, and you know it is time to collect them into a single wire.

• cadquery.Workplane.plane() provides a reference to the workplane, which allows you to convert between
workplane coordinates and global coordinates: * cadquery.occ_impl.geom.Plane.toWorldCoords() will
convert local coordinates to global ones * cadquery.occ_impl.geom.Plane.toLocalCoords()will convert
from global coordinates to local coordinates

238 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

3.15.6 Coordinate Systems

Keep in mind that the user may be using a work plane that has created a local coordinate system. Consequently, the
orientation of shapes that you create are often implicitly defined by the user’s workplane.

Any objects that you create must be fully defined in global coordinates, even though some or all of the users’ inputs
may be defined in terms of local coordinates.

3.15.7 Linking in your plugin

Your plugin is a single method, which is attached to the main Workplane or CadQuery object.

Your plugin method’s first parameter should be ‘self’, which will provide a reference to base class functionality. You
can also accept other arguments.

To install it, simply attach it to the CadQuery or Workplane object, like this:

def _yourFunction(self, arg1, arg):
do stuff
return whatever_you_want

cq.Workplane.yourPlugin = _yourFunction

That’s it!

3.15.8 CadQueryExample Plugins

Some core cadquery code is intentionally written exactly like a plugin. If you are writing your own plugins, have a look
at these methods for inspiration:

• cadquery.Workplane.polygon()

• cadquery.Workplane.cboreHole()

3.15.9 Plugin Example

This ultra simple plugin makes cubes of the specified size for each stack point.

(The cubes are off-center because the boxes have their lower left corner at the reference points.)

def makeCubes(self, length):
self refers to the CQ or Workplane object

inner method that creates a cube
def _singleCube(loc):

loc is a location in local coordinates
since we're using eachpoint with useLocalCoordinates=True
return cq.Solid.makeBox(length, length, length, pnt).locate(loc)

use CQ utility method to iterate over the stack, call our
method, and convert to/from local coordinates.
return self.eachpoint(_singleCube, True)

(continues on next page)

3.15. Extending CadQuery 239

CadQuery Documentation, Release 2.4.0

(continued from previous page)

link the plugin into CadQuery
cq.Workplane.makeCubes = makeCubes

use the plugin
result = (

cq.Workplane("XY")
.box(6.0, 8.0, 0.5)
.faces(">Z")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
.makeCubes(1.0)
.combineSolids()

)

3.16 RoadMap: Planned Features

CadQuery is not even close to finished!!!

Many features are planned for later versions. This page tracks them. If you find that you need features not listed here,
let us know!

3.16.1 Workplanes

rotated workplanes
support creation of workplanes at an angle to another plane or face

workplane local rotations
rotate the coordinate system of a workplane by an angle.

make a workplane from a wire
useful to select outer wire and then operate from there, to allow offsets

3.16.2 Assemblies

implement more constraints
in plane, on axis, parallel to vector

3.16.3 2D operations

arc construction using relative measures
instead of forcing use of absolute workplane coordinates

tangent arcs
after a line

centerpoint arcs
including portions of arcs as well as with end points specified

trimming
ability to use construction geometry to trim other entities

240 Chapter 3. Table Of Contents

CadQuery Documentation, Release 2.4.0

construction lines
especially centerlines

2D fillets
for a rectangle, or for consecutive selected lines

2D chamfers
based on rectangles, polygons, polylines, or adjacent selected lines

mirror around centerline
using centerline construction geometry

midpoint selection
select midpoints of lines, arcs

face center
explicit selection of face center

manipulate spline control points
so that the shape of a spline can be more accurately controlled

feature snap
project geometry in the rest of the part into the work plane, so that they can be selected and used as references
for other features.

polyline edges
allow polyline to be combined with other edges/curves

3.16.4 3D operations

rotation/transform that return a copy
The current rotateAboutCenter and translate method modify the object, rather than returning a copy

primitive creation

Need primitive creation for:

• cone

• torus

• wedge

3.16. RoadMap: Planned Features 241

CadQuery Documentation, Release 2.4.0

242 Chapter 3. Table Of Contents

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

243

CadQuery Documentation, Release 2.4.0

244 Chapter 4. Indices and tables

PYTHON MODULE INDEX

c
cadquery, 102
cadquery.cqgi, 235
cadquery.occ_impl.exporters.assembly, 217
cadquery.selectors, 208

245

CadQuery Documentation, Release 2.4.0

246 Python Module Index

INDEX

Symbols
__add__() (cadquery.Workplane method), 159
__and__() (cadquery.Workplane method), 159
__bool__() (cadquery.Compound method), 106
__eq__() (cadquery.Plane method), 119
__eq__() (cadquery.Shape method), 123
__eq__() (cadquery.Vector method), 153
__getitem__() (cadquery.Matrix method), 116
__hash__ (cadquery.Plane attribute), 119
__hash__ (cadquery.Vector attribute), 153
__hash__() (cadquery.Shape method), 123
__init__() (cadquery.Assembly method), 102
__init__() (cadquery.BoundBox method), 105
__init__() (cadquery.Color method), 106
__init__() (cadquery.DirectionMinMaxSelector

method), 108
__init__() (cadquery.Location method), 116
__init__() (cadquery.Matrix method), 116
__init__() (cadquery.NearestToPointSelector method),

117
__init__() (cadquery.Plane method), 119
__init__() (cadquery.Shape method), 124
__init__() (cadquery.Sketch method), 134
__init__() (cadquery.StringSyntaxSelector method),

152
__init__() (cadquery.TypeSelector method), 152
__init__() (cadquery.Vector method), 153
__init__() (cadquery.Vertex method), 155
__init__() (cadquery.Workplane method), 159
__init__() (cadquery.occ_impl.exporters.dxf.DxfDocument

method), 220
__iter__() (cadquery.Assembly method), 103
__iter__() (cadquery.Shape method), 124
__iter__() (cadquery.Sketch method), 134
__iter__() (cadquery.Wire method), 155
__ne__() (cadquery.Plane method), 119
__or__() (cadquery.Workplane method), 160
__repr__() (cadquery.Matrix method), 117
__repr__() (cadquery.Plane method), 119
__repr__() (cadquery.Vector method), 153
__str__() (cadquery.Vector method), 153
__sub__() (cadquery.Workplane method), 160

__weakref__ (cadquery.Assembly attribute), 103
__weakref__ (cadquery.BoundBox attribute), 105
__weakref__ (cadquery.Color attribute), 106
__weakref__ (cadquery.Location attribute), 116
__weakref__ (cadquery.Matrix attribute), 117
__weakref__ (cadquery.Plane attribute), 119
__weakref__ (cadquery.Selector attribute), 121
__weakref__ (cadquery.Shape attribute), 124
__weakref__ (cadquery.Sketch attribute), 134
__weakref__ (cadquery.Vector attribute), 154
__weakref__ (cadquery.Workplane attribute), 160

A
add() (cadquery.Assembly method), 103
add() (cadquery.BoundBox method), 105
add() (cadquery.Workplane method), 160
add_error() (cadquery.cqgi.ScriptCallback method),

236
add_layer() (cadquery.occ_impl.exporters.dxf.DxfDocument

method), 220
add_shape() (cadquery.occ_impl.exporters.dxf.DxfDocument

method), 220
all() (cadquery.Workplane method), 161
ancestors() (cadquery.Compound method), 106
ancestors() (cadquery.Shape method), 124
ancestors() (cadquery.Workplane method), 161
AndSelector (class in cadquery.selectors), 208
arc() (cadquery.Sketch method), 134
arcCenter() (cadquery.Edge method), 109
Area() (cadquery.Shape method), 121
AreaNthSelector (class in cadquery.selectors), 208
assemble() (cadquery.Sketch method), 134
assembleEdges() (cadquery.Wire class method), 155
Assembly (class in cadquery), 102

B
BaseDirSelector (class in cadquery.selectors), 209
BinarySelector (class in cadquery.selectors), 210
BoundBox (class in cadquery), 104
BoundingBox() (cadquery.Shape method), 121
box() (cadquery.Workplane method), 161
BoxSelector (class in cadquery.selectors), 210

247

CadQuery Documentation, Release 2.4.0

build() (cadquery.cqgi.CQModel method), 235
BuildResult (class in cadquery.cqgi), 235

C
cadquery

module, 102
cadquery.cqgi

module, 235
cadquery.occ_impl.exporters.assembly

module, 217
cadquery.selectors

module, 208
cast() (cadquery.Shape class method), 124
cboreHole() (cadquery.Workplane method), 162
Center() (cadquery.Face method), 113
Center() (cadquery.Shape method), 122
Center() (cadquery.Vector method), 153
Center() (cadquery.Vertex method), 154
center() (cadquery.Workplane method), 163
CenterNthSelector (class in cadquery.selectors), 210
CenterOfBoundBox() (cadquery.Shape method), 122
centerOfMass() (cadquery.Shape static method), 124
chamfer() (cadquery.occ_impl.shapes.Mixin3D

method), 206
chamfer() (cadquery.Sketch method), 134
chamfer() (cadquery.Workplane method), 163
chamfer2D() (cadquery.Face method), 113
chamfer2D() (cadquery.Wire method), 155
circle() (cadquery.Sketch method), 135
circle() (cadquery.Workplane method), 164
clean() (cadquery.Shape method), 124
clean() (cadquery.Sketch method), 135
clean() (cadquery.Workplane method), 164
close() (cadquery.Edge method), 109
close() (cadquery.Sketch method), 135
close() (cadquery.Wire method), 155
close() (cadquery.Workplane method), 165
Closed() (cadquery.Shape method), 122
Color (class in cadquery), 106
combine() (cadquery.Wire class method), 156
combine() (cadquery.Workplane method), 165
CombinedCenter() (cadquery.Shape static method),

122
CombinedCenterOfBoundBox() (cadquery.Shape static

method), 122
combineSolids() (cadquery.Workplane method), 165
Compound (class in cadquery), 106
Compounds() (cadquery.Shape method), 122
compounds() (cadquery.Workplane method), 166
CompSolids() (cadquery.Shape method), 122
computeMass() (cadquery.Shape static method), 124
consolidateWires() (cadquery.Workplane method),

166

ConstantAssignmentFinder (class in cadquery.cqgi),
235

constrain() (cadquery.Assembly method), 103
constrain() (cadquery.Sketch method), 135
Constraint (in module cadquery), 108
copy() (cadquery.Shape method), 125
copy() (cadquery.Sketch method), 136
copyWorkplane() (cadquery.Workplane method), 166
CQ (in module cadquery), 106
CQModel (class in cadquery.cqgi), 235
cskHole() (cadquery.Workplane method), 166
cut() (cadquery.Compound method), 106
cut() (cadquery.Shape method), 125
cut() (cadquery.Workplane method), 167
cutBlind() (cadquery.Workplane method), 168
cutEach() (cadquery.Workplane method), 168
cutThruAll() (cadquery.Workplane method), 168
cylinder() (cadquery.Workplane method), 169

D
debug() (cadquery.cqgi.ScriptCallback method), 236
default_value (cadquery.cqgi.InputParameter at-

tribute), 235
delete() (cadquery.Sketch method), 136
desc (cadquery.cqgi.InputParameter attribute), 235
describe_parameter() (cadquery.cqgi.ScriptCallback

method), 236
DirectionMinMaxSelector (class in cadquery), 108
DirectionMinMaxSelector (class in cad-

query.selectors), 211
DirectionNthSelector (class in cadquery.selectors),

211
DirectionSelector (class in cadquery), 109
DirectionSelector (class in cadquery.selectors), 212
distance() (cadquery.Shape method), 125
distances() (cadquery.Shape method), 125
distribute() (cadquery.Sketch method), 136
dprism() (cadquery.occ_impl.shapes.Mixin3D method),

206
DxfDocument (class in cad-

query.occ_impl.exporters.dxf), 219

E
each() (cadquery.Sketch method), 136
each() (cadquery.Workplane method), 170
eachpoint() (cadquery.Workplane method), 170
Edge (class in cadquery), 109
edge() (cadquery.Sketch method), 136
Edges() (cadquery.Shape method), 123
edges() (cadquery.Shape method), 125
edges() (cadquery.Sketch method), 137
edges() (cadquery.Workplane method), 171
ellipse() (cadquery.Sketch method), 137
ellipse() (cadquery.Workplane method), 171

248 Index

CadQuery Documentation, Release 2.4.0

ellipseArc() (cadquery.Workplane method), 172
end() (cadquery.Workplane method), 172
endPoint() (cadquery.occ_impl.shapes.Mixin1D

method), 203
enlarge() (cadquery.BoundBox method), 105
EnvironmentBuilder (class in cadquery.cqgi), 235
exportAssembly() (in module cad-

query.occ_impl.exporters.assembly), 217
exportBrep() (cadquery.Shape method), 125
exportCAF() (in module cad-

query.occ_impl.exporters.assembly), 218
exportGLTF() (in module cad-

query.occ_impl.exporters.assembly), 218
exportStep() (cadquery.Shape method), 126
exportStl() (cadquery.occ_impl.shapes.Shape

method), 226
exportStl() (cadquery.Shape method), 126
exportSvg() (cadquery.Workplane method), 173
exportVRML() (in module cad-

query.occ_impl.exporters.assembly), 218
exportVTKJS() (in module cad-

query.occ_impl.exporters.assembly), 218
extrude() (cadquery.Workplane method), 173
extrudeLinear() (cadquery.Solid class method), 144
extrudeLinearWithRotation() (cadquery.Solid class

method), 144

F
Face (class in cadquery), 113
face() (cadquery.Sketch method), 137
Faces() (cadquery.Shape method), 123
faces() (cadquery.Shape method), 126
faces() (cadquery.Sketch method), 137
faces() (cadquery.Workplane method), 173
facesIntersectedByLine() (cadquery.Shape

method), 127
fillet() (cadquery.occ_impl.shapes.Mixin3D method),

207
fillet() (cadquery.Sketch method), 138
fillet() (cadquery.Workplane method), 174
fillet2D() (cadquery.Face method), 113
fillet2D() (cadquery.Wire method), 156
filter() (cadquery.NearestToPointSelector method),

117
filter() (cadquery.Selector method), 121
filter() (cadquery.selectors.BaseDirSelector method),

209
filter() (cadquery.selectors.BinarySelector method),

210
filter() (cadquery.selectors.BoxSelector method), 210
filter() (cadquery.selectors.DirectionNthSelector

method), 211
filter() (cadquery.selectors.InverseSelector method),

212

filter() (cadquery.selectors.NearestToPointSelector
method), 213

filter() (cadquery.selectors.Selector method), 215
filter() (cadquery.selectors.StringSyntaxSelector

method), 216
filter() (cadquery.selectors.TypeSelector method),

217
filter() (cadquery.StringSyntaxSelector method), 152
filter() (cadquery.TypeSelector method), 152
finalize() (cadquery.Sketch method), 138
findFace() (cadquery.Workplane method), 174
findOutsideBox2D() (cadquery.BoundBox static

method), 105
findSolid() (cadquery.Workplane method), 175
first() (cadquery.Workplane method), 175
fix() (cadquery.Shape method), 127
fuse() (cadquery.Compound method), 107
fuse() (cadquery.Shape method), 127

G
geomType() (cadquery.Shape method), 127

H
hashCode() (cadquery.Shape method), 128
hLine() (cadquery.Workplane method), 175
hLineTo() (cadquery.Workplane method), 175
hole() (cadquery.Workplane method), 176
hull() (cadquery.Sketch method), 138

I
importBrep() (cadquery.Shape class method), 128
importDXF() (cadquery.importers method), 222
importDXF() (cadquery.Sketch method), 138
InputParameter (class in cadquery.cqgi), 235
interpPlate() (cadquery.Solid class method), 145
interpPlate() (cadquery.Workplane method), 176
intersect() (cadquery.Compound method), 107
intersect() (cadquery.Shape method), 128
intersect() (cadquery.Workplane method), 177
InvalidParameterError, 236
InverseSelector (class in cadquery.selectors), 212
isEqual() (cadquery.Shape method), 128
isInside() (cadquery.BoundBox method), 105
isInside() (cadquery.occ_impl.shapes.Mixin3D

method), 207
isNull() (cadquery.Shape method), 129
isSame() (cadquery.Shape method), 129
isSolid() (cadquery.Solid static method), 146
isValid() (cadquery.Shape method), 129
item() (cadquery.Workplane method), 178

K
key() (cadquery.selectors.AreaNthSelector method), 209

Index 249

CadQuery Documentation, Release 2.4.0

key() (cadquery.selectors.CenterNthSelector method),
211

key() (cadquery.selectors.LengthNthSelector method),
213

key() (cadquery.selectors.RadiusNthSelector method),
215

L
largestDimension() (cadquery.Workplane method),

178
last() (cadquery.Workplane method), 178
LengthNthSelector (class in cadquery.selectors), 212
line() (cadquery.Workplane method), 178
lineTo() (cadquery.Workplane method), 178
locate() (cadquery.Shape method), 129
located() (cadquery.Shape method), 129
located() (cadquery.Sketch method), 138
Location (class in cadquery), 115
location() (cadquery.Shape method), 129
locationAt() (cadquery.occ_impl.shapes.Mixin1D

method), 203
locations() (cadquery.occ_impl.shapes.Mixin1D

method), 203
loft() (cadquery.Workplane method), 179

M
makeBox() (cadquery.Solid class method), 146
makeCircle() (cadquery.Wire class method), 156
makeCompound() (cadquery.Compound class method),

107
makeCone() (cadquery.Solid class method), 146
makeCylinder() (cadquery.Solid class method), 147
makeEllipse() (cadquery.Edge class method), 109
makeEllipse() (cadquery.Wire class method), 156
makeFromWires() (cadquery.Face class method), 113
makeHelix() (cadquery.Wire class method), 157
makeLine() (cadquery.Edge class method), 110
makeLoft() (cadquery.Solid class method), 147
makeNSidedSurface() (cadquery.Face class method),

113
makePolygon() (cadquery.Wire class method), 157
makeRuledSurface() (cadquery.Face class method),

114
makeShell() (cadquery.Shell class method), 133
makeSolid() (cadquery.Solid class method), 147
makeSphere() (cadquery.Solid class method), 148
makeSpline() (cadquery.Edge class method), 111
makeSplineApprox() (cadquery.Edge class method),

111
makeSplineApprox() (cadquery.Face class method),

114
makeTangentArc() (cadquery.Edge class method), 112
makeText() (cadquery.Compound class method), 107

makeThreePointArc() (cadquery.Edge class method),
112

makeTorus() (cadquery.Solid class method), 148
makeWedge() (cadquery.Solid class method), 149
Matrix (class in cadquery), 116
matrixOfInertia() (cadquery.Shape static method),

129
mesh() (cadquery.Shape method), 130
mirror() (cadquery.Shape method), 130
mirror() (cadquery.Workplane method), 179
mirrorX() (cadquery.Workplane method), 179
mirrorY() (cadquery.Workplane method), 180
Mixin1D (class in cadquery.occ_impl.shapes), 203
Mixin3D (class in cadquery.occ_impl.shapes), 206
module

cadquery, 102
cadquery.cqgi, 235
cadquery.occ_impl.exporters.assembly, 217
cadquery.selectors, 208

move() (cadquery.Shape method), 130
move() (cadquery.Workplane method), 180
moved() (cadquery.Shape method), 130
moved() (cadquery.Sketch method), 139
moveTo() (cadquery.Workplane method), 180
multiply() (cadquery.Vector method), 154

N
name (cadquery.cqgi.InputParameter attribute), 236
named() (cadquery.Plane class method), 119
NearestToPointSelector (class in cadquery), 117
NearestToPointSelector (class in cad-

query.selectors), 213
newObject() (cadquery.Workplane method), 181
NoOutputError, 236
normal() (cadquery.occ_impl.shapes.Mixin1D method),

204
normalAt() (cadquery.Face method), 115
normalized() (cadquery.Vector method), 154

O
offset() (cadquery.Sketch method), 139
offset2D() (cadquery.Wire method), 158
offset2D() (cadquery.Workplane method), 181

P
ParallelDirSelector (class in cadquery), 117
ParallelDirSelector (class in cadquery.selectors),

213
paramAt() (cadquery.occ_impl.shapes.Mixin1D

method), 204
ParameterDescriptionFinder (class in cad-

query.cqgi), 236
parametricCurve() (cadquery.Workplane method),

181

250 Index

CadQuery Documentation, Release 2.4.0

parametricSurface() (cadquery.Workplane method),
182

parray() (cadquery.Sketch method), 139
parse() (in module cadquery.cqgi), 236
PerpendicularDirSelector (class in cadquery), 118
PerpendicularDirSelector (class in cad-

query.selectors), 214
placeSketch() (cadquery.Workplane method), 182
Plane (class in cadquery), 118
polarArray() (cadquery.Workplane method), 182
polarLine() (cadquery.Workplane method), 183
polarLineTo() (cadquery.Workplane method), 183
polygon() (cadquery.Sketch method), 139
polygon() (cadquery.Workplane method), 183
polyline() (cadquery.Workplane method), 184
positionAt() (cadquery.occ_impl.shapes.Mixin1D

method), 204
positions() (cadquery.occ_impl.shapes.Mixin1D

method), 205
project() (cadquery.occ_impl.shapes.Mixin1D

method), 205
projectToLine() (cadquery.Vector method), 154
projectToPlane() (cadquery.Vector method), 154
push() (cadquery.Sketch method), 140
pushPoints() (cadquery.Workplane method), 184

R
radius() (cadquery.occ_impl.shapes.Mixin1D method),

205
radiusArc() (cadquery.Workplane method), 185
RadiusNthSelector (class in cadquery.selectors), 214
rarray() (cadquery.Sketch method), 140
rarray() (cadquery.Workplane method), 185
rect() (cadquery.Sketch method), 140
rect() (cadquery.Workplane method), 185
regularPolygon() (cadquery.Sketch method), 140
remove() (cadquery.Compound method), 108
reset() (cadquery.Sketch method), 141
revolve() (cadquery.Solid class method), 149
revolve() (cadquery.Workplane method), 186
rotate() (cadquery.Shape method), 130
rotate() (cadquery.Workplane method), 187
rotateAboutCenter() (cadquery.Workplane method),

187
rotated() (cadquery.Plane method), 120

S
sagittaArc() (cadquery.Workplane method), 188
save() (cadquery.Assembly method), 104
scale() (cadquery.Shape method), 131
ScriptCallback (class in cadquery.cqgi), 236
ScriptExecutionError, 236
ScriptMetadata (class in cadquery.cqgi), 236
section() (cadquery.Workplane method), 188

segment() (cadquery.Sketch method), 141
select() (cadquery.Sketch method), 141
Selector (class in cadquery), 121
Selector (class in cadquery.selectors), 215
setOrigin2d() (cadquery.Plane method), 120
Shape (class in cadquery), 121
ShapeResult (class in cadquery.cqgi), 236
shapes (cadquery.Assembly property), 104
Shell (class in cadquery), 133
shell() (cadquery.occ_impl.shapes.Mixin3D method),

207
shell() (cadquery.Workplane method), 188
Shells() (cadquery.Shape method), 123
shells() (cadquery.Shape method), 131
shells() (cadquery.Workplane method), 189
show_object() (cadquery.cqgi.ScriptCallback method),

236
siblings() (cadquery.Compound method), 108
siblings() (cadquery.Shape method), 131
siblings() (cadquery.Workplane method), 189
size() (cadquery.Workplane method), 190
Sketch (class in cadquery), 133
sketch() (cadquery.Workplane method), 190
slot() (cadquery.Sketch method), 141
slot2D() (cadquery.Workplane method), 190
Solid (class in cadquery), 144
Solids() (cadquery.Shape method), 123
solids() (cadquery.Shape method), 131
solids() (cadquery.Workplane method), 190
solve() (cadquery.Assembly method), 104
solve() (cadquery.Sketch method), 142
sortWiresByBuildOrder() (in module cadquery), 203
sphere() (cadquery.Workplane method), 191
spline() (cadquery.Sketch method), 142
spline() (cadquery.Workplane method), 191
splineApprox() (cadquery.Workplane method), 193
split() (cadquery.Shape method), 131
split() (cadquery.Workplane method), 193
startPoint() (cadquery.occ_impl.shapes.Mixin1D

method), 205
stitch() (cadquery.Wire method), 158
StringSyntaxSelector (class in cadquery), 151
StringSyntaxSelector (class in cadquery.selectors),

215
SubtractSelector (class in cadquery.selectors), 216
SumSelector (class in cadquery.selectors), 216
sweep() (cadquery.Solid class method), 150
sweep() (cadquery.Workplane method), 194
sweep_multi() (cadquery.Solid class method), 150

T
tag() (cadquery.Sketch method), 142
tag() (cadquery.Workplane method), 194

Index 251

CadQuery Documentation, Release 2.4.0

tangentArcPoint() (cadquery.Workplane method),
195

tangentAt() (cadquery.occ_impl.shapes.Mixin1D
method), 206

test() (cadquery.DirectionSelector method), 109
test() (cadquery.ParallelDirSelector method), 118
test() (cadquery.PerpendicularDirSelector method),

118
test() (cadquery.selectors.BaseDirSelector method),

209
test() (cadquery.selectors.DirectionSelector method),

212
test() (cadquery.selectors.ParallelDirSelector method),

214
test() (cadquery.selectors.PerpendicularDirSelector

method), 214
text() (cadquery.Workplane method), 195
thicken() (cadquery.Face method), 115
threePointArc() (cadquery.Workplane method), 196
toArcs() (cadquery.Face method), 115
toCompound() (cadquery.Assembly method), 104
toJSON() (in module cadquery.occ_impl.assembly), 218
toLocalCoords() (cadquery.Plane method), 120
toOCC() (cadquery.Workplane method), 196
toPending() (cadquery.Workplane method), 197
toPln() (cadquery.Face method), 115
toSplines() (cadquery.Shape method), 132
toSvg() (cadquery.Workplane method), 197
toTuple() (cadquery.Color method), 106
toTuple() (cadquery.Location method), 116
toVtkPolyData() (cadquery.Shape method), 132
toWorldCoords() (cadquery.Plane method), 121
transformed() (cadquery.Workplane method), 197
transformGeometry() (cadquery.Shape method), 132
transformShape() (cadquery.Shape method), 132
translate() (cadquery.Shape method), 133
translate() (cadquery.Workplane method), 197
transposed_list() (cadquery.Matrix method), 117
trapezoid() (cadquery.Sketch method), 143
traverse() (cadquery.Assembly method), 104
twistExtrude() (cadquery.Workplane method), 198
TypeSelector (class in cadquery), 152
TypeSelector (class in cadquery.selectors), 216

U
union() (cadquery.Workplane method), 198

V
val() (cadquery.Sketch method), 143
val() (cadquery.Workplane method), 199
valid_values (cadquery.cqgi.InputParameter at-

tribute), 236
validate() (cadquery.cqgi.CQModel method), 235
vals() (cadquery.Sketch method), 143

vals() (cadquery.Workplane method), 199
varType (cadquery.cqgi.InputParameter attribute), 236
Vector (class in cadquery), 152
Vertex (class in cadquery), 154
Vertices() (cadquery.Shape method), 123
vertices() (cadquery.Shape method), 133
vertices() (cadquery.Sketch method), 143
vertices() (cadquery.Workplane method), 199
visit_Call() (cadquery.cqgi.ParameterDescriptionFinder

method), 236
vLine() (cadquery.Workplane method), 199
vLineTo() (cadquery.Workplane method), 199
Volume() (cadquery.Shape method), 123

W
wedge() (cadquery.Workplane method), 200
Wire (class in cadquery), 155
wire() (cadquery.Workplane method), 201
Wires() (cadquery.Shape method), 123
wires() (cadquery.Shape method), 133
wires() (cadquery.Sketch method), 143
wires() (cadquery.Workplane method), 201
Workplane (class in cadquery), 158
workplane() (cadquery.Workplane method), 202
workplaneFromTagged() (cadquery.Workplane

method), 202

252 Index

	See CadQuery in Action
	Quick Links
	Table Of Contents
	Introduction
	What is CadQuery
	CadQuery is a library, GUIs are separate
	Why CadQuery instead of OpenSCAD?
	Where does the name CadQuery come from?

	Installing CadQuery
	Install via conda
	Install the Conda Package Manager
	conda

	Install via pip
	Adding a Nicer GUI via CQ-editor
	Linux/MacOS
	Windows
	Installing extra packages

	Adding CQ-editor to an Existing Environment
	Jupyter
	Test Your Installation

	QuickStart
	Prerequisites: CadQuery and CQ-editor installation
	What we’ll accomplish
	Start With A single, simple Plate
	Add the Holes
	More Holes
	Filleting
	Exporting
	Done!
	Want to learn more?

	Design Principles
	Principle 1: Intuitive Construction
	Principle 2: Capture Design Intent
	Principle 3: Plugins as first class citizens
	Principle 4: CAD models as source code makes sense

	Concepts
	3D BREP Topology Concepts
	Workplane class
	Workplanes
	2D Construction
	3D Construction
	Selectors
	Construction Geometry
	The Stack
	Chaining
	The Context Solid
	Iteration
	CadQuery API layers
	The Fluent API
	The Direct API
	The OCCT API
	Going back and forth between the APIs
	Fluent API <=> Direct API
	Direct API <=> OCCT API

	Multimethods
	An Introspective Example
	Assemblies
	Assemblies with constraints

	Sketch
	Sketch tutorial
	Face-based API
	Modes

	Edge-based API
	Convex hull
	Constraint-based sketches

	Workplane integration

	Assemblies
	Assembly tutorial
	Defining parameters
	Defining reusable components
	Initial assembly
	Constraints definition
	Final result
	Data export

	Object locations
	Constraints
	Point
	Axis
	Plane
	PointInPlane
	PointOnLine
	FixedPoint
	FixedRotation
	FixedAxis

	Assembly colors

	CadQuery Scripts and Object Output
	Examples
	Simple Rectangular Plate
	Plate with Hole
	An extruded prismatic solid
	Building Profiles using lines and arcs
	Moving The Current working point
	Using Point Lists
	Polygons
	Polylines
	Defining an Edge with a Spline
	Mirroring Symmetric Geometry
	Mirroring 3D Objects
	Mirroring From Faces
	Creating Workplanes on Faces
	Locating a Workplane on a vertex
	Offset Workplanes
	Copying Workplanes
	Rotated Workplanes
	Using construction Geometry
	Shelling To Create Thin features
	Making Lofts
	Extruding until a given face
	Making Counter-bored and Counter-sunk Holes
	Offsetting wires in 2D
	Rounding Corners with Fillet
	Tagging objects
	A Parametric Bearing Pillow Block
	Splitting an Object
	The Classic OCC Bottle
	A Parametric Enclosure
	Lego Brick
	Braille Example
	Panel With Various Connector Holes
	Cycloidal gear

	API Reference
	Sketch initialization
	Sketch selection
	Sketching with faces
	Sketching with edges and constraints
	Initialization
	2D Operations
	3D Operations
	File Management and Export
	Iteration Methods
	Stack and Selector Methods
	Selectors
	Assemblies

	Selectors Reference
	Combining Selectors
	Filtering Faces
	Filtering Edges
	Filtering Vertices
	User-defined Directions
	Topological Selectors
	Using selectors with Shape and Sketch objects

	CadQuery Class Summary
	Core Classes
	Topological Classes
	Geometry Classes
	Selector Classes
	Class Details

	Importing and Exporting Files
	Introduction
	Import Formats
	Export Formats
	Notes on the Formats

	Importing DXF
	Importing STEP
	Exporting STEP
	Default
	Non-Default File Extensions
	Setting Extra Options

	Exporting Assemblies to STEP
	Default
	Fused
	Naming

	Exporting Assemblies to glTF
	Exporting SVG
	Exporting STL
	Exporting AMF and 3MF
	Exporting TJS
	Exporting VRML
	Exporting DXF
	Options
	Units
	Approximation strategy

	Exporting Other Formats

	The CadQuery Gateway Interface
	The Script Side
	The execution environment side
	More about script variables
	Automating export to STL
	Important CQGI Methods
	Complete CQGI API

	Extending CadQuery
	Using OpenCascade methods
	Extending CadQuery: Plugins
	The Stack
	Preserving the Chain
	Helper Methods
	Coordinate Systems
	Linking in your plugin
	CadQueryExample Plugins
	Plugin Example

	RoadMap: Planned Features
	Workplanes
	Assemblies
	2D operations
	3D operations

	Indices and tables
	Python Module Index
	Index

