

CadQuery 2 Documentation

CadQuery is an intuitive, easy-to-use Python library for building parametric 3D CAD models. It has several goals:

	Build models with scripts that are as close as possible to how you’d describe the object to a human,
using a standard, already established programming language

	Create parametric models that can be very easily customized by end users

	Output high quality CAD formats like STEP, AMF and 3MF in addition to traditional STL

	Provide a non-proprietary, plain text model format that can be edited and executed with only a web browser

See CadQuery in Action

This Getting Started Video [https://youtu.be/lxhBNOE7GVs] will show you what CadQuery can do. Please note that the video has not been updated for CadQuery 2 and still shows CadQuery use within FreeCAD.

Quick Links

	QuickStart

	CadQuery CheatSheet

	API Reference

Table Of Contents

	Introduction
	What is CadQuery

	CadQuery is a library, GUIs are separate

	Why CadQuery instead of OpenSCAD?

	Where does the name CadQuery come from?

	Installing CadQuery
	Install via conda

	Install via pip

	Adding a Nicer GUI via CQ-editor

	Adding CQ-editor to an Existing Environment

	Jupyter

	Test Your Installation

	QuickStart
	Prerequisites: CadQuery and CQ-editor installation

	What we’ll accomplish

	Start With A single, simple Plate

	Add the Holes

	More Holes

	Filleting

	Exporting

	Done!

	Want to learn more?

	Design Principles
	Principle 1: Intuitive Construction

	Principle 2: Capture Design Intent

	Principle 3: Plugins as first class citizens

	Principle 4: CAD models as source code makes sense

	Concepts
	3D BREP Topology Concepts

	Workplane class

	Workplanes

	2D Construction

	3D Construction

	Selectors

	Construction Geometry

	The Stack

	Chaining

	The Context Solid

	Iteration

	CadQuery API layers

	Multimethods

	An Introspective Example

	Assemblies

	Assemblies with constraints

	Sketch
	Sketch tutorial

	Workplane integration

	Assemblies
	Assembly tutorial

	Object locations

	Constraints

	Assembly colors

	CadQuery Scripts and Object Output

	Examples
	Simple Rectangular Plate

	Plate with Hole

	An extruded prismatic solid

	Building Profiles using lines and arcs

	Moving The Current working point

	Using Point Lists

	Polygons

	Polylines

	Defining an Edge with a Spline

	Mirroring Symmetric Geometry

	Mirroring 3D Objects

	Mirroring From Faces

	Creating Workplanes on Faces

	Locating a Workplane on a vertex

	Offset Workplanes

	Copying Workplanes

	Rotated Workplanes

	Using construction Geometry

	Shelling To Create Thin features

	Making Lofts

	Extruding until a given face

	Making Counter-bored and Counter-sunk Holes

	Offsetting wires in 2D

	Rounding Corners with Fillet

	Tagging objects

	A Parametric Bearing Pillow Block

	Splitting an Object

	The Classic OCC Bottle

	A Parametric Enclosure

	Lego Brick

	Braille Example

	Panel With Various Connector Holes

	Cycloidal gear

	API Reference
	Sketch initialization

	Sketch selection

	Sketching with faces

	Sketching with edges and constraints

	Initialization

	2D Operations

	3D Operations

	File Management and Export

	Iteration Methods

	Stack and Selector Methods

	Selectors

	Assemblies

	API Cheatsheet [https://cadquery.readthedocs.io/en/latest/_static/cadquery_cheatsheet.html]

	Selectors Reference
	Combining Selectors

	Filtering Faces

	Filtering Edges

	Filtering Vertices

	User-defined Directions

	Topological Selectors

	Using selectors with Shape and Sketch objects

	CadQuery Class Summary
	Core Classes

	Topological Classes

	Geometry Classes

	Selector Classes

	Class Details

	Importing and Exporting Files
	Introduction

	Importing DXF

	Importing STEP

	Exporting STEP

	Exporting Assemblies to STEP

	Exporting Assemblies to glTF

	Exporting SVG

	Exporting STL

	Exporting AMF and 3MF

	Exporting TJS

	Exporting VRML

	Exporting DXF

	Exporting Other Formats

	The CadQuery Gateway Interface
	The Script Side

	The execution environment side

	More about script variables

	Automating export to STL

	Important CQGI Methods

	Complete CQGI API

	Extending CadQuery
	Using OpenCascade methods

	Extending CadQuery: Plugins

	The Stack

	Preserving the Chain

	Helper Methods

	Coordinate Systems

	Linking in your plugin

	CadQueryExample Plugins

	Plugin Example

	RoadMap: Planned Features
	Workplanes

	Assemblies

	2D operations

	3D operations

Indices and tables

	Index

	Module Index

	Search Page

Introduction

What is CadQuery

CadQuery is an intuitive, easy-to-use Python library for building parametric 3D CAD models. It has several goals:

	Build models with scripts that are as close as possible to how you’d describe the object to a human,
using a standard, already established programming language

	Create parametric models that can be very easily customized by end users

	Output high quality CAD formats like STEP, AMF and 3MF in addition to traditional STL

	Provide a non-proprietary, plain text model format that can be edited and executed with only a web browser

CadQuery 2 is based on
OCP [https://github.com/CadQuery/OCP],
which is a set of Python bindings for the open-source OpenCascade [http://www.opencascade.com/] modelling kernel.

Using CadQuery, you can build fully parametric models with a very small amount of code. For example, this simple script
produces a flat plate with a hole in the middle:

thickness = 0.5
width = 2.0
result = Workplane("front").box(width, width, thickness).faces(">Z").hole(thickness)

[image: _images/simpleblock.png]
That’s a bit of a dixie-cup example. But it is pretty similar to a more useful part: a parametric pillow block for a
standard 608-size ball bearing:

(length, height, diam, thickness, padding) = (30.0, 40.0, 22.0, 10.0, 8.0)

result = (
 Workplane("XY")
 .box(length, height, thickness)
 .faces(">Z")
 .workplane()
 .hole(diam)
 .faces(">Z")
 .workplane()
 .rect(length - padding, height - padding, forConstruction=True)
 .vertices()
 .cboreHole(2.4, 4.4, 2.1)
)

[image: _images/pillowblock.png]
Lots more examples are available in the Examples

CadQuery is a library, GUIs are separate

CadQuery is a library, that’s intentionally designed to be usable as a GUI-less library. This enables
its use in a variety of engineering and scientific applications that create 3D models programmatically.

If you’d like a GUI, you have a couple of options:

	The Qt-based GUI CQ-editor [https://github.com/CadQuery/CQ-editor]

	As a Jupyter extension jupyter-cadquery [https://github.com/bernhard-42/jupyter-cadquery]

Why CadQuery instead of OpenSCAD?

Like OpenSCAD, CadQuery is an open-source, script based, parametric model generator. But CadQuery has several key advantages:

	The scripts use a standard programming language, Python, and thus can benefit from the associated infrastructure.
This includes many standard libraries and IDEs

	More powerful CAD kernel OpenCascade is much more powerful than CGAL. Features supported natively
by OCC include NURBS, splines, surface sewing, STL repair, STEP import/export, and other complex operations,
in addition to the standard CSG operations supported by CGAL

	Ability to import/export STEP and DXF We think the ability to begin with a STEP model, created in a CAD package,
and then add parametric features is key. This is possible in OpenSCAD using STL, but STL is a lossy format

	Less Code and easier scripting CadQuery scripts require less code to create most objects, because it is possible to locate
features based on the position of other features, workplanes, vertices, etc.

	Better Performance CadQuery scripts can build STL, STEP, AMF and 3MF faster than OpenSCAD.

Where does the name CadQuery come from?

CadQuery is inspired by jQuery [http://www.jquery.com], a popular framework that
revolutionized web development involving JavaScript.

CadQuery is for 3D CAD what jQuery is for JavaScript.
If you are familiar with how jQuery works, you will probably recognize several jQuery features that CadQuery uses:

	A fluent API to create clean, easy to read code

	Ability to use the library along side other Python libraries

	Clear and complete documentation, with plenty of samples.

Installing CadQuery

To install both Cadquery and CQ-Editor together with a single installer see the instructions below Adding a Nicer GUI via CQ-editor.

CadQuery may be installed with either conda or pip. The conda installation method is the better tested and more mature option.

Install via conda

Begin by installing the conda package manager. If conda is already installed skip to conda.

Install the Conda Package Manager

In principle, any Conda distribution will work, but it is probably best to install Mambaforge [https://github.com/conda-forge/miniforge#mambaforge] to a local directory and to avoid running conda init. After performing a local directory installation, Mambaforge can be activated via the [scripts,bin]/activate scripts. This will help avoid polluting and breaking the local Python installation.

Mambaforge is a minimal installer that sets conda-forge as the default channel for package installation and provides mamba [https://mamba.readthedocs.io/en/latest/user_guide/mamba.html]. You can swap almost all commands between conda & mamba.

In Linux/MacOS, the local directory installation method looks something like this:

Install to ~/mambaforge
curl -L -o mambaforge.sh "https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-$(uname)-$(uname -m).sh"
bash mambaforge.sh -b -p $HOME/mambaforge

Activate
source $HOME/mambaforge/bin/activate

On Windows, download the installer and double click it on the file browser or install non-interactively as follows:

:: Install to %USERPROFILE%\Mambaforge
curl -L -o mambaforge.exe https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Windows-x86_64.exe
start /wait "" mambaforge.exe /InstallationType=JustMe /RegisterPython=0 /NoRegistry=1 /NoScripts=1 /S /D=%USERPROFILE%\Mambaforge

:: Activate
cmd /K ""%USERPROFILE%/Mambaforge/Scripts/activate.bat" "%USERPROFILE%/Mambaforge""

It might be worthwhile to consider using /NoScripts=0 to have an activation shortcut added to the start menu.

After conda installation, create and activate a new conda environment [https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html] to prepare for cadquery installation.

conda

mamba install is recommended over conda install for faster and less memory intensive cadquery installation.

Install the latest released version of cadquery:

conda create -n cq
conda activate cq
mamba install cadquery

or install a given version of cadquery 1:

conda create -n cq231
conda activate cq231
mamba install cadquery=2.3.1

or install the latest dev version:

conda create -n cqdev
conda activate cqdev
mamba install -c cadquery cadquery=master

Add the conda-forge channel explicitly to the install command if needed (not using a miniforge based conda distribution).

Install via pip

CadQuery can be installed via pip on Linux, MacOS and Windows. Python versions 3.9 and newer are supported by CadQuery, however a bleeding-edge Python installation may be broken due to lagging support in CadQuery’s complex set of dependencies. If the pip installation method does not work for your system, you can try the conda installation method above.

It is highly recommended that a virtual environment is used when installing CadQuery, although it is not strictly required. Installing CadQuery via pip requires an up-to-date version of pip, which can be obtained with the following command line (or a slight variation thereof).:

python3 -m pip install --upgrade pip

Once a current version of pip is installed, CadQuery can be installed using the following command line.:

pip install cadquery

It is also possible to install the very latest changes directly from CadQuery’s GitHub repository, with the understanding that sometimes breaking changes can occur. To install from the git repository, run the following command line.:

pip install git+https://github.com/CadQuery/cadquery.git

You should now have a working CadQuery installation, but developers or users who want to use CadQuery with IPython/Jupyter or to set up a developer environment can read the rest of this section.

If you are installing CadQuery to use with IPython/Jupyter, you may want to run the following command line to install the extra dependencies.:

pip install cadquery[ipython]

If you want to create a developer setup to contribute to CadQuery, the following command line will install all the development dependencies that are needed.:

pip install cadquery[dev]

Adding a Nicer GUI via CQ-editor

If you prefer to have a GUI available, your best option is to use
CQ-editor [https://github.com/CadQuery/CQ-editor].

You can download the newest build here [https://github.com/CadQuery/CQ-editor/releases/tag/nightly]. Install and run the run.sh (Linux/MacOS) or run.bat (Windows) script in the root CQ-editor directory. The CQ-editor window should launch.

Linux/MacOS

	Download the installer (.sh script matching OS and platform).

	Select the script in the file browser and make executable. Choose Properties from the context menu and select Permissions, Allow executing file as a program (or similar, this step varies depending on OS and window manager).

	Select the script in the file browser and choose Run as Program (or similar).

Follow the prompts to accept the license and optionally change the installation location.

The default installation location is /home/<username>/cq-editor.

	Launch the run.sh script from the file brower (again make executable first and then run as program).

To install from command line, download the installer using curl or wget or your favorite program and run the script.:

curl -LO https://github.com/CadQuery/CQ-editor/releases/download/nightly/CQ-editor-master-Linux-x86_64.sh
sh CQ-editor-master-Linux-x86_64.sh

To run from command.:

$HOME/cq-editor/run.sh

Windows

	Download the installer (.exe) and double click it on the file browser.

Follow the prompts to accept the license and optionally change the installation location.

The default installation location is C:\Users\<username>\cq-editor.

	Launch the run.bat script from the file brower (select Open).

To run from command line, activate the environment, then run cq-editor:

C:\Users\<username>\cq-editor\run.bat

Installing extra packages

mamba, and pip are bundled with the CQ-editor installer and available for package installation.

First activate the environment, then call mamba or pip to install additional packages.

On windows.:

C:\Users\<username>\cq-editor\Scripts\activate
mamba install <packagename>

On Linux/MacOS.:

source $HOME/cq-editor/bin/activate
mamba install <packagename>

Adding CQ-editor to an Existing Environment

You can install CQ-editor into a conda environment or Python virtual environment using conda (mamba) or pip.

Example cq-editor installation with conda (this installs both cadquery and cq-editor):

conda create -n cqdev
conda activate cqdev
mamba install -c cadquery cq-editor=master

Example cq-editor installation with pip:

pip install PyQt5 spyder pyqtgraph logbook
pip install git+https://github.com/CadQuery/CQ-editor.git

Jupyter

Viewing models in Jupyter is another good option for a GUI. Models are rendered in the browser.

The cadquery library works out-of-the-box with Jupyter.
First install cadquery, then install JupyterLab [https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html] in the same conda or Python venv.:

conda

mamba install jupyterlab

pip

pip install jupyterlab

Start JupyterLab:

jupyter lab

JupyterLab will open automatically in your browser. Create a Notebook to interactively edit/view CadQuery models.

Call display to show the model.:

display(<Workplane, Shape, or Assembly object>)

Test Your Installation

If all has gone well, you can open a command line/prompt, and type:

$ python
$ import cadquery
$ cadquery.Workplane('XY').box(1,2,3).toSvg()

You should see raw SVG output displayed on the command line if the CadQuery installation was successful.

Note

	1

	Older releases may not be compatible with the latest OCP/OCCT version. In that case, specify the version of the dependency explicitly.

mamba install cadquery=2.2.0 ocp=7.7.0.*

QuickStart

Want a quick glimpse of what CadQuery can do? This quickstart will demonstrate the basics of CadQuery using a simple example

Prerequisites: CadQuery and CQ-editor installation

If you have not already done so, follow the Installing CadQuery, to install CadQuery and CQ-editor.

After installation, run CQ-editor:

[image: _images/001.png]
Find the CadQuery code editor, on the left side. You’ll see that we start out with the script for a simple block.

What we’ll accomplish

We will build a fully parametric bearing pillow block in this quickstart. Our finished object will look like this:

[image: _images/000.png]
We would like our block to have these features:

	It should be sized to hold a single 608 (‘skate’) bearing, in the center of the block.

	It should have counter-bored holes for M2 socket head cap screws at the corners.

	The length and width of the block should be configurable by the user to any reasonable size.

A human would describe this as:

“A rectangular block 80mm x 60mm x 10mm , with counter-bored holes for M2 socket head cap screws
at the corners, and a circular pocket 22mm in diameter in the middle for a bearing.”

Human descriptions are very elegant, right?
Hopefully our finished script will not be too much more complex than this human-oriented description.

Let’s see how we do.

Start With A single, simple Plate

Let’s start with a simple model that makes nothing but a rectangular block, but
with place-holders for the dimensions. Paste this into the code editor:

1 height = 60.0
2 width = 80.0
3 thickness = 10.0
4
5 # make the base
6 result = cq.Workplane("XY").box(height, width, thickness)
7
8 # Render the solid
9 show_object(result)

Press the green Render button in the toolbar to run the script. You should see our base object.

[image: _images/002.png]
Nothing special, but its a start!

Add the Holes

Our pillow block needs to have a 22mm diameter hole in the center to hold the bearing.

This modification will do the trick:

 1 height = 60.0
 2 width = 80.0
 3 thickness = 10.0
 4 diameter = 22.0
 5
 6 # make the base
 7 result = (
 8 cq.Workplane("XY")
 9 .box(height, width, thickness)
10 .faces(">Z")
11 .workplane()
12 .hole(diameter)
13)
14
15 # Render the solid
16 show_object(result)

Rebuild your model by clicking the Render button. Your block should look like this:

[image: _images/003.png]
The code is pretty compact, let’s step through it.

Line 4 adds a new parameter, diameter, for the diameter of the hole

Lines 10-12, we’re adding the hole.
cadquery.Workplane.faces() selects the top-most face in the Z direction, and then
cadquery.Workplane.workplane() begins a new workplane located on this face. The center of this workplane
is located at the center of mass of the shape, which in this case is the center of the plate.
Finally, cadquery.Workplane.hole() drills a hole through the part, 22mm in diameter.

Note

Don’t worry about the CadQuery syntax now.. you can learn all about it in the API Reference later.

More Holes

Ok, that hole was not too hard, but what about the counter-bored holes in the corners?

An M2 Socket head cap screw has these dimensions:

	Head Diameter : 3.8 mm

	Head height : 2.0 mm

	Clearance Hole : 2.4 mm

	CounterBore diameter : 4.4 mm

The centers of these holes should be 6mm from the edges of the block. And,
we want the block to work correctly even when the block is re-sized by the user.

Don’t tell me we’ll have to repeat the steps above 8 times to get counter-bored holes?
Good news!– we can get the job done with just a few lines of code. Here’s the code we need:

 1 height = 60.0
 2 width = 80.0
 3 thickness = 10.0
 4 diameter = 22.0
 5 padding = 12.0
 6
 7 # make the base
 8 result = (
 9 cq.Workplane("XY")
10 .box(height, width, thickness)
11 .faces(">Z")
12 .workplane()
13 .hole(diameter)
14 .faces(">Z")
15 .workplane()
16 .rect(height - padding, width - padding, forConstruction=True)
17 .vertices()
18 .cboreHole(2.4, 4.4, 2.1)
19)
20 # Render the solid
21 show_object(result)

After clicking the Render button to re-execute the model, you should see something like this:

[image: _images/004.png]

There is quite a bit going on here, so let’s break it down a bit.

Line 5 creates a new padding parameter that decides how far the holes are from the edges of the plate.

Lines 11-12 selects the top-most face of the block, and creates a workplane on the top of that face, which we’ll use to
define the centers of the holes in the corners.

There are a couple of things to note about this line:

	The cadquery.Workplane.rect() function draws a rectangle. forConstruction=True
tells CadQuery that this rectangle will not form a part of the solid,
but we are just using it to help define some other geometry.

	Unless you specify otherwise, a rectangle is drawn with its center on the current workplane center– in
this case, the center of the top face of the block. So this rectangle will be centered on the face.

Line 16 draws a rectangle 12mm smaller than the overall length and width of the block, which we will use to
locate the corner holes. We’ll use the vertices (corners) of this rectangle to locate the holes. The rectangle’s
center is at the center of the workplane, which in this case coincides with the center of the bearing hole.

Line 17 selects the vertices of the rectangle, which we will use for the centers of the holes.
The cadquery.Workplane.vertices() function selects the corners of the rectangle.

Line 18 uses the cboreHole function to draw the holes.
The cadquery.Workplane.cboreHole() function is a handy CadQuery function that makes a counterbored hole.
Like most other CadQuery functions, it operates on the values on the stack. In this case, since we
selected the four vertices before calling the function, the function operates on each of the four points–
which results in a counterbore hole at each of the rectangle corners.

Filleting

Almost done. Let’s just round the corners of the block a bit. That’s easy, we just need to select the edges
and then fillet them:

We can do that using the preset dictionaries in the parameter definition:

 1 height = 60.0
 2 width = 80.0
 3 thickness = 10.0
 4 diameter = 22.0
 5 padding = 12.0
 6
 7 # make the base
 8 result = (
 9 cq.Workplane("XY")
10 .box(height, width, thickness)
11 .faces(">Z")
12 .workplane()
13 .hole(diameter)
14 .faces(">Z")
15 .workplane()
16 .rect(height - padding, width - padding, forConstruction=True)
17 .vertices()
18 .cboreHole(2.4, 4.4, 2.1)
19 .edges("|Z")
20 .fillet(2.0)
21)
22
23 # Render the solid
24 show_object(result)

Line 20 fillets the edges using the cadquery.Workplane.fillet() method.

To grab the right edges, the cadquery.Workplane.edges() selects all of the
edges that are parallel to the Z axis (”|Z”),

The finished product looks like this:

[image: _images/005.png]

Exporting

If you want to fabricate a physical object you need to export the result to STL or DXF. Additionally, exporting as STEP for post-processing in another CAD tool is also possible.

This can be easily accomplished using the cadquery.exporters.export() function:

 1 height = 60.0
 2 width = 80.0
 3 thickness = 10.0
 4 diameter = 22.0
 5 padding = 12.0
 6
 7 # make the base
 8 result = (
 9 cq.Workplane("XY")
10 .box(height, width, thickness)
11 .faces(">Z")
12 .workplane()
13 .hole(diameter)
14 .faces(">Z")
15 .workplane()
16 .rect(height - padding, width - padding, forConstruction=True)
17 .vertices()
18 .cboreHole(2.4, 4.4, 2.1)
19 .edges("|Z")
20 .fillet(2.0)
21)
22
23 # Render the solid
24 show_object(result)
25
26 # Export
27 cq.exporters.export(result, "result.stl")
28 cq.exporters.export(result.section(), "result.dxf")
29 cq.exporters.export(result, "result.step")

Done!

You just made a parametric, model that can generate pretty much any bearing pillow block
with <30 lines of code.

Want to learn more?

	The Examples contains lots of examples demonstrating cadquery features

	The API Reference is a good overview of language features grouped by function

	The CadQuery Class Summary is the hard-core listing of all functions available.

Design Principles

Principle 1: Intuitive Construction

CadQuery aims to make building models using python scripting easy and intuitive.
CadQuery strives to allow scripts to read roughly as a human would describe an object verbally.

For example, consider this object:

[image: _images/quickstart.png]
A human would describe this as:

“A block 80mm square x 30mm thick , with countersunk holes for M2 socket head cap screws
at the corners, and a circular pocket 22mm in diameter in the middle for a bearing”

The goal is to have the CadQuery script that produces this object be as close as possible to the English phrase
a human would use.

Principle 2: Capture Design Intent

The features that are not part of the part description above are just as important as those that are. For example, most
humans will assume that:

	The countersunk holes are spaced a uniform distance from the edges

	The circular pocket is in the center of the block, no matter how big the block is

If you have experience with 3D CAD systems, you also know that there is a key design intent built into this object.
After the base block is created, how the hole is located is key. If it is located from one edge, changing the block
size will have a different effect than if the hole is located from the center.

Many scripting languages do not provide a way to capture design intent– because they require that you always work in
global coordinates. CadQuery is different– you can locate features relative to others in a relative way– preserving
the design intent just like a human would when creating a drawing or building an object.

In fact, though many people know how to use 3D CAD systems, few understand how important the way that an object is built
impact its maintainability and resiliency to design changes.

Principle 3: Plugins as first class citizens

Any system for building 3D models will evolve to contain an immense number of libraries and feature builders. It is
important that these can be seamlessly included into the core and used alongside the built in libraries. Plugins
should be easy to install and familiar to use.

Principle 4: CAD models as source code makes sense

It is surprising that the world of 3D CAD is primarily dominated by systems that create opaque binary files.
Just like the world of software, CAD models are very complex.

CAD models have many things in common with software, and would benefit greatly from the use of tools that are standard
in the software industry, such as:

	Easily re-using features between objects

	Storing objects using version control systems

	Computing the differences between objects by using source control tools

	Share objects on the Internet

	Automate testing and generation by allowing objects to be built from within libraries

CadQuery is designed to make 3D content creation easy enough that the above benefits can be attained without more work
than using existing ‘opaque’, ‘point and click’ solutions.

Concepts

3D BREP Topology Concepts

Before talking about CadQuery, it makes sense to talk a little about 3D CAD topology. CadQuery is based upon the
OpenCascade kernel, which uses Boundary Representations (BREP) for objects. This just means that objects
are defined by their enclosing surfaces.

When working in a BREP system, these fundamental constructs exist to define a shape (working up the food chain):

	vertex

	a single point in space

	edge

	a connection between two or more vertices along a particular path (called a curve)

	wire

	a collection of edges that are connected together.

	face

	a set of edges or wires that enclose a surface

	shell

	a collection of faces that are connected together along some of their edges

	solid

	a shell that has a closed interior

	compound

	a collection of solids

When using CadQuery, all of these objects are created, hopefully with the least possible work. In the actual CAD
kernel, there is another set of Geometrical constructs involved as well. For example, an arc-shaped edge will
hold a reference to an underlying curve that is a full circle, and each linear edge holds underneath it the equation
for a line. CadQuery shields you from these constructs.

Workplane class

The Workplane class contains the currently selected objects (a list of Shapes, Vectors or Locations
in the objects attribute), the modelling context (in the
ctx attribute), and CadQuery’s fluent api methods. It is the main class
that users will instantiate.

See API Reference to learn more.

Workplanes

Most CAD programs use the concept of Workplanes. If you have experience with other CAD programs you will probably
feel comfortable with CadQuery’s Workplanes, but if you don’t have experience then they are an essential concept to
understand.

Workplanes represent a plane in space, from which other features can be located. They have a center point and a local
coordinate system. Most methods that create an object do so relative to the current workplane.

Usually the first workplane created is the “XY” plane, also known as the “front” plane. Once a solid is defined the most
common way to create a workplane is to select a face on the solid that you intend to modify and create a new workplane
relative to it. You can also create new workplanes in anywhere in world coordinate system, or relative to other planes
using offsets or rotations.

The most powerful feature of workplanes is that they allow you to work in 2D space in the coordinate system of the
workplane, and then CadQuery will transform these points from the workplane coordinate system to the world coordinate
system so your 3D features are located where you intended. This makes scripts much easier to create and maintain.

See cadquery.Workplane to learn more.

2D Construction

Once you create a workplane, you can work in 2D, and then later use the features you create to make 3D objects.
You’ll find all of the 2D constructs you expect – circles, lines, arcs, mirroring, points, etc.

See 2D Operations to learn more.

3D Construction

You can construct 3D primitives such as boxes, wedges, cylinders and spheres directly. You can also sweep, extrude,
and loft 2D geometry to form 3D features. Of course the basic primitive operations are also available.

See 3D Operations to learn more.

Selectors

Selectors allow you to select one or more features, in order to define new features. As an example, you might
extrude a box, and then select the top face as the location for a new feature. Or, you might extrude a box, and
then select all of the vertical edges so that you can apply a fillet to them.

You can select Vertices, Edges, Faces, Solids, and Wires using selectors.

Think of selectors as the equivalent of your hand and mouse, if you were to build an object using a conventional CAD system.

See Selectors to learn more.

Construction Geometry

Construction geometry are features that are not part of the object, but are only defined to aid in building the object.
A common example might be to define a rectangle, and then use the corners to define the location of a set of holes.

Most CadQuery construction methods provide a forConstruction keyword, which creates a feature that will only be used
to locate other features.

The Stack

As you work in CadQuery, each operation returns a new Workplane object with the result of that
operations. Each Workplane object has a list of objects, and a reference to its parent.

You can always go backwards to older operations by removing the current object from the stack. For example:

Workplane(someObject).faces(">Z").first().vertices()

returns a CadQuery object that contains all of the vertices on the highest face of someObject. But you can always move
backwards in the stack to get the face as well:

Workplane(someObject).faces(">Z").first().vertices().end()

You can browse stack access methods here: Stack and Selector Methods.

Chaining

All Workplane methods return another Workplane object, so that you can chain the methods together
fluently. Use the core Workplane methods to get at the objects that were created.

Each time a new Workplane object is produced during these chained calls, it has a
parent attribute that points to the Workplane object that created it.
Several CadQuery methods search this parent chain, for example when searching for the context solid.
You can also give a Workplane object a tag, and further down your chain of calls you can refer back
to this particular object using its tag.

The Context Solid

Most of the time, you are building a single object, and adding features to that single object. CadQuery watches
your operations, and defines the first solid object created as the ‘context solid’. After that, any features
you create are automatically combined (unless you specify otherwise) with that solid. This happens even if the
solid was created a long way up in the stack. For example:

Workplane("XY").box(1, 2, 3).faces(">Z").circle(0.25).extrude(1)

Will create a 1x2x3 box, with a cylindrical boss extending from the top face. It was not necessary to manually
combine the cylinder created by extruding the circle with the box, because the default behavior for extrude is
to combine the result with the context solid. The hole() method works similarly – CadQuery presumes that you want
to subtract the hole from the context solid.

If you want to avoid this, you can specify combine=False, and CadQuery will create the solid separately.

Iteration

CAD models often have repeated geometry, and its really annoying to resort to for loops to construct features.
Many CadQuery methods operate automatically on each element on the stack, so that you don’t have to write loops.
For example, this:

Workplane("XY").box(1, 2, 3).faces(">Z").vertices().circle(0.5)

Will actually create 4 circles, because vertices() selects 4 vertices of a rectangular face, and the circle() method
iterates on each member of the stack.

This is really useful to remember when you author your own plugins. cadquery.Workplane.each() is useful for this purpose.

CadQuery API layers

Once you start to dive a bit more into CadQuery, you may find yourself a bit confused juggling between different types of objects the CadQuery APIs can return.
This chapter aims to give an explanation on this topic and to provide background on the underlying implementation and kernel layers so you can leverage more of CadQuery functionality.

CadQuery is composed of 3 different API, which are implemented on top of each other.

	The Fluent API

	The Direct API

	The OCCT API

The Fluent API

What we call the fluent API is what you work with when you first start using CadQuery, the Workplane class and all its methods defines the Fluent API.
This is the API you will use and see most of the time, it’s fairly easy to use and it simplifies a lot of things for you. A classic example could be :

part = Workplane("XY").box(1, 2, 3).faces(">Z").vertices().circle(0.5).cutThruAll()

Here we create a Workplane object on which we subsequently call several methods to create our part. A general way of thinking about the Fluent API is to
consider the Workplane as your part object and all it’s methods as operations that will affect your part.
Often you will start with an empty Workplane, then add more features by calling Workplane methods.

This hierarchical structure of operations modifying a part is well seen with the traditional code style used in CadQuery code.
Code written with the CadQuery fluent API will often look like this :

part = Workplane("XY").box(1, 2, 3).faces(">Z").vertices().circle(0.5).cutThruAll()

Or like this :

part = Workplane("XY")
part = part.box(1, 2, 3)
part = part.faces(">Z")
part = part.vertices()
part = part.circle(0.5)
part = part.cutThruAll()

Note

While the first code style is what people default to, it’s important to note that when you write your code like this it’s equivalent as writting it on a single line.
It’s then more difficult to debug as you cannot visualize each operation step by step, which is a functionality that is provided by the CQ-Editor debugger for example.

The Direct API

While the fluent API exposes much functionality, you may find scenarios that require extra flexibility or require working with lower level objects.

The direct API is the API that is called by the fluent API under the hood. The 9 topological classes and their methods compose the direct API.
These classes actually wrap the equivalent Open CASCADE Technology (OCCT) classes.
The 9 topological classes are :

	Shape

	Compound

	CompSolid

	Solid

	Shell

	Face

	Wire

	Edge

	Vertex

Each class has its own methods to create and/or edit shapes of their respective type. As already explained in Concepts there is also some kind of hierarchy in the
topological classes. A Wire is made of several edges which are themselves made of several vertices. This means you can create geometry from the bottom up and have a lot of control over it.

For example we can create a circular face like so

circle_wire = Wire.makeCircle(10, Vector(0, 0, 0), Vector(0, 0, 1))
circular_face = Face.makeFromWires(circle_wire, [])

Note

In CadQuery (and OCCT) all the topological classes are shapes, the Shape class is the most abstract topological class.
The topological class inherits Mixin3D or Mixin1D which provide aditional methods that are shared between the classes that inherits them.

The direct API as its name suggests doesn’t provide a parent/children data structure, instead each method call directly returns an object of the specified topological type.
It is more verbose than the fluent API and more tedious to work with, but as it offers more flexibility (you can work with faces, which is something you can’t do in the fluent API)
it is sometimes more convenient than the fluent API.

The OCCT API

Finally we are discussing about the OCCT API. The OCCT API is the lowest level of CadQuery. The direct API is built upon the OCCT API, where the OCCT API in CadQuery is available through OCP.
OCP are the Python bindings of the OCCT C++ libraries CadQuery uses. This means you have access to (almost) all the OCCT C++ libraries in Python and in CadQuery.
Working with the OCCT API will give you the maximum flexibility and control over you designs, it is however very verbose and difficult to use. You will need to have a strong
knowledge of the different C++ libraries to be able to achieve what you want. To obtain this knowledge the most obvious ways are :

	Read the direct API source code, since it is build upon the OCCT API it is full of example usage.

	Go through the C++ documentation [https://dev.opencascade.org/doc/overview/html/]

Note

The general way of importing a specific class of the OCCT API is

from OCP.thePackageName import theClassName

For example if you want to use the class BRepPrimAPI_MakeBox [https://dev.opencascade.org/doc/refman/html/class_b_rep_prim_a_p_i___make_box.html].
You will go by the following

from OCP.BRepPrimAPI import BRepPrimAPI_MakeBox

The package name of any class is written at the top of the documentation page. Often it’s written in the class name itself as a prefix.

Going back and forth between the APIs

While the 3 APIs provide 3 different layer of complexity and functionality you can mix the 3 layers as you wish.
Below is presented the different ways you can interact with the different API layers.

Fluent API <=> Direct API

Here are all the possibilities you have to get an object from the Direct API (i.e a topological object).

You can end the Fluent API call chain and get the last object on the stack with Workplane.val() alternatively you can get all
the objects with Workplane.vals()

>>> box = Workplane().box(10, 5, 5)
>>> print(type(box))
<class cadquery.cq.Workplane>

>>> box = Workplane().box(10, 5, 5).val()
>>> print(type(box))
<class cadquery.occ_impl.shapes.Solid>

If you are only interested in getting the context solid of your Workplane, you can use Workplane.findSolid():

>>> part = Workplane().box(10,5,5).circle(3).val()
>>> print(type(part))
<class cadquery.cq.Wire>

>>> part = Workplane().box(10,5,5).circle(3).findSolid()
>>> print(type(part))
<class cadquery.occ_impl.shapes.Compound>
The return type of findSolid is either a Solid or a Compound object

If you want to go the other way around i.e using objects from the topological API in the Fluent API here are your options :

You can pass a topological object as a base object to the Workplane object.

solid_box = Solid.makeBox(10, 10, 10)
part = Workplane(obj=solid_box)
And you can continue your modelling in the fluent API
part = part.faces(">Z").circle(1).extrude(10)

You can add a topological object as a new operation/step in the Fluent API call chain with Workplane.newObject()

circle_wire = Wire.makeCircle(1, Vector(0, 0, 0), Vector(0, 0, 1))
box = Workplane().box(10, 10, 10).newObject([circle_wire])
And you can continue modelling
box = (
 box.toPending().cutThruAll()
) # notice the call to `toPending` that is needed if you want to use it in a subsequent operation

Direct API <=> OCCT API

Every object of the Direct API stores its OCCT equivalent object in its wrapped attribute.:

>>> box = Solid.makeBox(10,5,5)
>>> print(type(box))
<class cadquery.occ_impl.shapes.Solid>

>>> box = Solid.makeBox(10,5,5).wrapped
>>> print(type(box))
<class OCP.TopoDS.TopoDS_Solid>

If you want to cast an OCCT object into a Direct API one you can just pass it as a parameter of the intended class:

>>> occt_box = BRepPrimAPI_MakeBox(5,5,5).Solid()
>>> print(type(occt_box))
<class OCP.TopoDS.TopoDS_Solid>

>>> direct_api_box = Solid(occt_box)
>>> print(type(direct_api_box))
<class cadquery.occ_impl.shapes.Solid>

Note

You can cast into the direct API the types found here [https://dev.opencascade.org/doc/refman/html/class_topo_d_s___shape.html]

Multimethods

CadQuery uses Multimethod [https://coady.github.io/multimethod/] to allow a call to a method to
be dispatched depending on the types of the arguments. An example is arc(),
where a_sketch.arc((1, 2), (2, 3)) would be dispatched to one method but a_sketch.arc((1, 2),
(2, 3), (3, 4)) would be dispatched to a different method. For multimethods to work, you should
not use keyword arguments to specify positional parameters. For example, you should not write
a_sketch.arc(p1=(1, 2), p2=(2, 3), p3=(3, 4)), instead you should use the previous example.
Note CadQuery makes an attempt to fall back on the first registered multimethod in the event of a
dispatch error, but it is still best practice to not use keyword arguments to specify positional
arguments in CadQuery.

An Introspective Example

Note

If you are just beginning with CadQuery then you can leave this example for later. If you have
some experience with creating CadQuery models and now you want to read the CadQuery source to
better understand what your code does, then it is recommended you read this example first.

To demonstrate the above concepts, we can define more detailed string representations for the
Workplane, Plane and CQContext classes and
patch them in:

import cadquery as cq

def tidy_repr(obj):
 """Shortens a default repr string"""
 return repr(obj).split(".")[-1].rstrip(">")

def _ctx_str(self):
 return (
 tidy_repr(self)
 + ":\n"
 + f" pendingWires: {self.pendingWires}\n"
 + f" pendingEdges: {self.pendingEdges}\n"
 + f" tags: {self.tags}"
)

cq.cq.CQContext.__str__ = _ctx_str

def _plane_str(self):
 return (
 tidy_repr(self)
 + ":\n"
 + f" origin: {self